Question

Point Estimation by M.L.E. and Assessment by M.S.E.) Let Y1, · · · , Yn be...

Point Estimation by M.L.E. and Assessment by M.S.E.) Let Y1, · · · , Yn be a random sample from the p.d.f f(y | θ) = (r/θ)yr-1exp(−yr/θ), θ > 0, y > 0, where r is a known positive constant. (1) Find the M.L.E. of θ; (2) Find the M.S.E. of (estimator)θMLE.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Y1, ... , Yn be a random sample from the p.d.f. f(y | θ) =...
Let Y1, ... , Yn be a random sample from the p.d.f. f(y | θ) = (r/θ)yr-1exp(-yr/θ), θ > 0, y > 0, where r is a known positive constant. (1) Find the Mean Likelihood Error of θ; (2) Find the Mean Squared Error of M.L.E.
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with...
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with density function f(y|θ) = (1/2θ)e-|y|/θ for -∞ < y < ∞ where θ > 0. The first two moments of the distribution are E(Y) = 0 and E(Y2) = 2θ2. a) Find the likelihood function of the sample. b) What is a sufficient statistic for θ? c) Find the maximum likelihood estimator of θ. d) Find the maximum likelihood estimator of the standard deviation...
Let Y1,Y2.....,Yn be independent ,uniformly distributed random variables on the interval[0,θ].,Y(n)=max(Y1,Y2,....,Yn),which is considered as an estimator...
Let Y1,Y2.....,Yn be independent ,uniformly distributed random variables on the interval[0,θ].,Y(n)=max(Y1,Y2,....,Yn),which is considered as an estimator of θ. Explain why Y is a good estimator for θ when sample size is large.
Suppose Y1,··· ,Yn is a sample from a exponential distribution with mean θ, and let Y(1),···...
Suppose Y1,··· ,Yn is a sample from a exponential distribution with mean θ, and let Y(1),··· ,Y(n) denote the order statistics of the sample. (a) Find the constant c so that cY(1) is an unbiased estimator of θ. (b) Find the sufficient statistic for θ and MVUE for θ.
. Let Y1, ..., Yn denote a random sample from the exponential density function given by...
. Let Y1, ..., Yn denote a random sample from the exponential density function given by f(y|θ) = (1/θ)e-y/θ when, y > 0 Find an MVUE of V (Yi)
1. Let Y1 < Y2 < · · · Ym be the order statistics of m...
1. Let Y1 < Y2 < · · · Ym be the order statistics of m independent observations X1, · · · , Xm from a uniform distribution on the interval [θ, θ + 1]. (a) (5 points) Find the distribution of Yr, where r is a integer and 1 ≤ r ≤ m. (b) (5 points) Calculate V ar(Ym) if θ = 0. (c) (5 points) Suppose θ is unknown, m = 5 and we have observed that x1...
[8] Let Y1<Y2<...<Yn be the order statistics of n independent observations from U(0, 1). (i) Find...
[8] Let Y1<Y2<...<Yn be the order statistics of n independent observations from U(0, 1). (i) Find the p.d.f. of the r-th order statistics Yr. (ii) Find the mean and variance of Yr.
Let Y1, Y2, . . ., Yn be a random sample from a uniform distribution on...
Let Y1, Y2, . . ., Yn be a random sample from a uniform distribution on the interval (θ - λ, θ + λ) where -∞ < θ < ∞ and λ > 0. Find the method of moments estimators of θ and λ.
(a) Let Y1,Y2,··· ,Yn be i.i.d. with geometric distribution P(Y = y) = p(1−p)y-1 y=1, 2,...
(a) Let Y1,Y2,··· ,Yn be i.i.d. with geometric distribution P(Y = y) = p(1−p)y-1 y=1, 2, ........, 0<p<1. Find a sufficient statistic for p. (b) Let Y1,··· ,yn be a random sample of size n from a beta distribution with parameters α = θ and β = 2. Find the sufficient statistic for θ.
Let Y1, Y2, ... Yn be a random sample of an exponential population with parameter θ....
Let Y1, Y2, ... Yn be a random sample of an exponential population with parameter θ. Find the density function of the minimum of the sample Y(1) = min⁡(Y1, Y2, ..., Yn).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT