Assume that the differences are normally distributed. Complete parts (a) through (d) below.
Observation |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
|||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Upper X Subscript iXi |
46.746.7 |
47.747.7 |
45.645.6 |
50.250.2 |
48.448.4 |
50.850.8 |
47.847.8 |
48.648.6 |
||||||||||||||||
Upper Y Subscript iYi |
50.150.1 |
48.448.4 |
47.347.3 |
54.554.5 |
47.947.9 |
50.950.9 |
49.649.6 |
50.350.3 |
(a) Determine
d Subscript i Baseline equals Upper X Subscript i Baseline minus Upper Y Subscript idi=Xi−Yi
for each pair of data.
Observation |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
---|---|---|---|---|---|---|---|---|
di |
negative 3.4 −3.4 |
negative 0.7 −0.7 |
negative 1.7 −1.7 |
negative 4.3 −4.3 |
0.5 0.5 |
negative 0.1 −0.1 |
negative 1.8 −1.8 |
negative 1.7 −1.7 |
(Type integers or decimals.)
(b) Compute
d overbard
and
s Subscript dsd.
d overbardequals=negative 1.650 −1.650
(Round to three decimal places as needed.)
s Subscript dsdequals=1.605 1.605
(Round to three decimal places as needed.)(c) Test if
mu Subscript dμdless than<0
at the
alphaαequals=0.05
level of significance.
What are the correct null and alternative hypotheses?
A.
Upper H 0H0:
mu Subscript dμdless than<0
Upper H 1H1:
mu Subscript dμdequals=0
B.
Upper H 0H0:
mu Subscript dμdgreater than>0
Upper H 1H1:
mu Subscript dμdless than<0
C.
Upper H 0H0:
mu Subscript dμdless than<0
Upper H 1H1:
mu Subscript dμdgreater than>0
D.
Upper H 0H0:
mu Subscript dμdequals=0
Upper H 1H1:
mu Subscript dμdless than<0
(a)
is given by:
Observation | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
di | - 3.4 | -0.7 | - 1.7 | - 4.3 | 0.5 | - 0.1 | - 1.8 | - 1.7 |
(b)
(i)
= - 13.2/8 = - 1.650
(ii)
(c)
Correct option:
D. H0:
H1:
(d)
SE = sd/
= 1.605/ = 0.5675
Test statistic is:
t = - 1.650/0.5675 = - 2.9077
= 0.05
ndf = 8 - 1 = 7
One Tail Left Side Test
From Table, critical value of t = - 1.8946
Since the calculated value of t = - 2.9077 is less than critical value of t = - 1.8946, the difference is significant. Reject null hypothesis.
Conclusion:
The data support the claim that < 0 at the = 0.05 level of significance.
Get Answers For Free
Most questions answered within 1 hours.