Question

Suppose you choose 5 cards from a standard 52-card deck (with 13 hearts, 13 spades, 13...

Suppose you choose 5 cards from a standard 52-card deck (with 13 hearts, 13 spades, 13 clubs and 13 diamonds). How many different choices of cards are possible if a. you can choose any 5 cards from the deck? b. all 5 cards must be hearts? c. you must choose four kings and one queen? d. you must choose 3 kings and no queens? e. you must choose at least 1 king and at least 2 aces?

Homework Answers

Answer #1

(a) no. of ways = = 2598960.

(b) no. of ways = = 1287.

(c) no. of ways = = 4.

(d) no. of ways = = 3784, since first 3 cards must be 3 out of 4 kings and remaining 2 cards must be selected after excluding 4 kings and 4 queens from the deck of cards.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
he following question involves a standard deck of 52 playing cards. In such a deck of...
he following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
A standard deck of cards contains 4 suits (Hearts, Diamonds, Spades, and Clubs) each containing 13...
A standard deck of cards contains 4 suits (Hearts, Diamonds, Spades, and Clubs) each containing 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) for a total of 52 cards. In a typical game of poker, you are dealt five cards (without replacement) from a deck of 52 cards. How many Full Houses are possible? (A full house is a hand consisting of three of one rank and two of another. For instance, three...
A deck of playing cards has 52 cards. There are four suits (clubs, spades, hearts, and...
A deck of playing cards has 52 cards. There are four suits (clubs, spades, hearts, and diamonds). Each suit has 13 cards. Jacks, Queens, and Kings are called picture cards. Suppose you select three cards from the deck without replacement. a. Find the probability of getting a heart only on your second card. Round answer to three decimal places b Find the probability of selecting a Jack and a heart . Round answer to three decimal places. c. Find the...
The following question involves a standard deck of 52 playing cards. In such a deck of...
The following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
The following question involves a standard deck of 52 playing cards. In such a deck of...
The following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
. Consider 5-card hands from a standard 52-card deck of cards (and consider hands as sets,...
. Consider 5-card hands from a standard 52-card deck of cards (and consider hands as sets, so that the same cards in different orders are the same hand). In your answers to following questions you may use binomial coefficients and/or factorials. (Recall that there are 4 Aces, 4 Kings, and 4 Queens in the deck of cards) a) How many different 5-card hands are there? b) How many hands are there with no Aces? c) How many hands are there...
Probabilities with a deck of cards. There are 52 cards in a standard deck of cards....
Probabilities with a deck of cards. There are 52 cards in a standard deck of cards. There are 4 suits (Clubs, Hearts, Diamonds, and Spades) and there are 13 cards in each suit. Clubs/Spades are black, Hearts/Diamonds are red. There are 12 face cards. Face cards are those with a Jack (J), King (K), or Queen (Q) on them. For this question, we will consider the Ace (A) card to be a number card (i.e., number 1). Then for each...
a) Describe an experiments of the drawing of three cards from a deck of cards from...
a) Describe an experiments of the drawing of three cards from a deck of cards from which the jacks, queens and kings have been removed. (Note: these are 52 cards in a deck--13 cards are hearts, 13 cards are diamonds., 13 cards are clubs, and 13 cards are spades. A card with an ace counts as 1. Nine cards of each suit are marked 2 through 10. Ignore the jacks, queens, and kings, leaving 40 cards from which to draw.)...
A deck of playing cards contains 52 cards consisting of 13 hearts 13 diamonds 13 clubs...
A deck of playing cards contains 52 cards consisting of 13 hearts 13 diamonds 13 clubs and 13 spades If one card is selected at random find the probability that it is an ace ( round 3 decimals ) If one card is selected at randomfind the probability it is a diamond ( round 3 decimals) If one card is selected at random find the probability it is an ace or a diamond ( round 3 decimals ) If two...
1.A standard poker deck has 52 cards, in four suits (clubs, diamonds, hears, spades) of thirteen...
1.A standard poker deck has 52 cards, in four suits (clubs, diamonds, hears, spades) of thirteen denomination each (2, 3, ..., 10, Jack, Queen, King, Ace, in ascending order). A poker hand consists of 5 unordered cards. a. How many different poker hands are possible? (1 point) b. When drawing 5 cards at random from a poker deck, what is the probability of drawing two Hearts and a three Spades? (1 point) 2. Five students are to be sampled from...