Question

Two independent random samples have been selected. 100 observations from population 1 and 100 from population...

Two independent random samples have been selected. 100 observations from population 1 and 100 from population 2. Sample means ¯x_1=70 and ¯x_2=50 were obtained. From previous experience with these populations, it is known that the variances are σ_1^2=100 and σ_2^2=64. Construct a 95% confidence interval for (μ_1-μ_2 ).

(A) 20±2.15 (B) 20±2.51 (C) 20±2.35 (D) 20±1.15

Homework Answers

Answer #1

95% confidence interval for 1 - 2 is

(1 - 2 ) Z/2 * sqrt [21 / n1 + 22 / n2 ]

(70 -50) 1.96 * sqrt [ 100 / 100 + 64 / 100 ]

20 2.51

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(1 point) Two independent samples have been selected, 66 observations from population 1 and 51 observations...
(1 point) Two independent samples have been selected, 66 observations from population 1 and 51 observations from population 2. The sample means have been calculated to be x¯1=10.5 and x¯2=12.8. From previous experience with these populations, it is known that the variances are σ2/1=40 and σ2/2=36. (a)    Find σ(x¯1−x¯2). answer: (b)    Determine the rejection region for the test of H0:(μ1−μ2)=3.94H0:(μ1−μ2)=3.94 and Ha:(μ1−μ2)>3.94Ha:(μ1−μ2)>3.94 Use α=0.02 z> (c)    Compute the test statistic. z= (d)    Construct a 9898 % confidence interval for (μ1−μ2)(μ1−μ2).
Two independent samples have been selected, 55 observations from population 1 and 72observations from population 2....
Two independent samples have been selected, 55 observations from population 1 and 72observations from population 2. The sample means have been calculated to be x¯1=10.7 and x¯2=8.3. From previous experience with these populations, it is known that the variances are σ21=30 and σ22=23. (a) Determine the rejection region for the test of H0:(μ1−μ2)=2.77 H1:(μ1−μ2)>2.77 using α=0.04. z > __________ (b) Compute the test statistic. z = The final conclusion is A. We can reject H0. B. There is not sufficient...
Independent random samples were selected from populations 1 and 2. The sample sizes, means, and variances...
Independent random samples were selected from populations 1 and 2. The sample sizes, means, and variances are as follows.               Population               1 2 Sample Size      30 64 Sample Mean      11.4   6.9 Sample Variance        1.37   4.15 (a) Find a 95% confidence interval for estimating the difference in the population means (μ1 − μ2). (Round your answers to two decimal places.) to  
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=39,n2=40,x¯1=50.3,x¯2=73.8,s1=6s2=6.1 Find a 98% confidence interval for the difference μ1−μ2 of the population means, assuming equal population variances.
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=41, n2=44, x¯1=52.3, x¯2=77.3, s1=6 s2=10.8 Find a 96.5% confidence interval for the difference μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
Independent random samples are selected from two populations. The summary statistics are given below. Assume unequal...
Independent random samples are selected from two populations. The summary statistics are given below. Assume unequal variances for the questions below. m = 5 x ̅ = 12.7 s1 = 3.2 n = 7 y ̅ = 9.9 s2 = 2.1 a) Construct a 95% confidence interval for the difference of the means. b) Using alpha = 0.05, test if the means of the two populations are different based on the result from part (a). Explain your answer.
consider the following results frmo two independent random samples taken from two populations. assume that the...
consider the following results frmo two independent random samples taken from two populations. assume that the variances are NOT equal. Population 1 population 2 sample size 50 50 sample mean 35 30 sample variance 784 100 a) what is the "degrees of freedom" for these data? b) what is the 95% confidence interval difference of the population means?
Independent random samples, each containing 90 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 90 observations, were selected from two populations. The samples from populations 1 and 2 produced 73 and 64 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.09 The P-value is The final conclusion is A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0 B. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=51,n2=36,x¯1=56.5,x¯2=75.3,s1=5.3s2=10.7n1=51,x¯1=56.5,s1=5.3n2=36,x¯2=75.3,s2=10.7 Find a 97.5% confidence interval for the difference μ1−μ2μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=45,n2=40,x¯1=50.7,x¯2=71.9,s1=5.4s2=10.6 n 1 =45, x ¯ 1 =50.7, s 1 =5.4 n 2 =40, x ¯ 2 =71.9, s 2 =10.6 Find a 92.5% confidence interval for the difference μ1−μ2 μ 1 − μ 2 of the means, assuming equal population variances.