(a) \mu = Population mean = 34
\sigma = Population SD = 22
n = sample size = 292
\bar{x} = sample mean = 10200/292 = 34.9315
SE = \sigma /\sqrt{n}
= 22/\sqrt{292} = 1.2874
To find P(\bar{x}\geq34.9315):
Z = (\bar{x} - \mu )/SE
= (34.9315 - 34)/1.2874 = 0.7235
Table of Area Under Standard Normal Curve gives area = 0.4694
So,
P(\bar{x}>32.5342) = 0.5 - 0.4694 = 0.0306
So,
Answer is:
0.0306
(b)
Worst 10% corresponds to area = 0.5 - 0.10 = 0.40 from mid value tro Z on LHS.
Table gives Z score - 1.28
So,
Z = - 1.28 = (\bar{x} - 34)/1.2874
So,
\bar{x} = 31 - (1.28 X 1.2147)
= 31 - 1.5548
= 32.3521
So,
Answer is:
32.3521 X 292 = $ 9446.82
Get Answers For Free
Most questions answered within 1 hours.