Given that
let x,y be independent random variables each uniformly distributed on (0,1)
a) P(|X-Y|<0.5) = 0∫0.5 0∫0.5+Y (X-Y) dxdY + 0∫0.5 0∫0.5+x (y-x) dydx
⇒0∫0.5+Y (X-Y) dx =-0.5y2+0.125
⇒0∫0.5(-0.5y2+0.125)dy = 0.04167
⇒0∫0.5+x (y-x) dy = -0.5x2+0.125
⇒0∫0.5( -0.5x2+0.125) dx = 0.04167
0∫0.5 0∫0.5+Y (X-Y) dxdY + 0∫0.5 0∫0.5+x (y-x) dydx = 0.04167+0.04167 = 0.08334
P(|X-Y|<0.5) = 0.08334
b) P (|X/Y-1|<0.5) = 0∫0.50∫0.5X(X-Y) dydx + 0∫0.50∫0.5Y (y-x) dXdY
0∫0.5X(X-Y) dY = 0.375x2
0∫0.5(0.375x2) dy = 0.015625
0∫0.5Y (y-x) dX = 0.375y2
0∫0.5 (0.375y2) dy = 0.015625
0∫0.50∫0.5X(X-Y) dydx + 0∫0.50∫0.5Y (y-x) dXdY = 0.015625 + 0.015625 = 0.03125
P (|X/Y-1|<0.5) = 0.03125
Get Answers For Free
Most questions answered within 1 hours.