Question

The scores on a certain test are normally distributed with a mean score of 70 and...

The scores on a certain test are normally distributed with a mean score of 70 and a standard deviation of 3. What is the probability that a sample of 90 students will have a mean score of at least 70.3162?

Homework Answers

Answer #1

Mean = = 70

Standard deviation = = 3

Sample size = n = 90

We have to find P( 70.3162)

For finding this probability we have to find z score.

That is we have to find P(Z 1)

P(Z 1)= 1 - P(Z < 1) = 1 - 0.8413 = 0.1587

( From z table)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Scores on a certain test are normally distributed with a mean of 77.5 and a standard...
Scores on a certain test are normally distributed with a mean of 77.5 and a standard deviation 9.3. a) What is the probability that an individual student will score more than 90? b) What proportion of the population will have a score between of 70 and 85? c) Find the score that is the 80th percentile of all tests.
For a certain very large group of students, test scores are normally distributed with a mean...
For a certain very large group of students, test scores are normally distributed with a mean of 70 and a standard deviation of 8. A student will receive an A if he gets at least a 92, and must earn at least a 67 in order to pass. a. What is the probability that a student selected at random will get an A on the test? b. What is the probability that a random sample of 20 students will have...
12. a) If scores on a certain medical test are normally distributed with mean 50 and...
12. a) If scores on a certain medical test are normally distributed with mean 50 and standard deviation 5, what score (or lower) would place a score in the bottom 10% of scores? b) If scores on a certain medical test are normally distributed with mean 50 and standard deviation 5, and if 30 of these medical test scores are selected at random and the average score is computed, what is the probability that this average score will be greater...
Score on the standardized test are approximately normally distributed with a mean of 480 and a...
Score on the standardized test are approximately normally distributed with a mean of 480 and a standard deviation of 90. Six students are chosen at random. What is the probability that exactly one of them scores more than 600?
The scores on a Japanese test are normally distributed with a mean of 70 and a...
The scores on a Japanese test are normally distributed with a mean of 70 and a standard deviation of 3.2. Show your work step by step to receive full credit. The distribution table is attached to the last page. 1) (2 points) The failing grade is anything 2.5 or more standard deviations below the mean. What is the cutoff for a failing score? 2) (2 points) If 3200 students took the test, how many students failed? 3) (2 points) If...
A.) A certain intelligence test has scores that are normally distributed with a mean of 100...
A.) A certain intelligence test has scores that are normally distributed with a mean of 100 and a standard deviation of 10. An individual takes the test and converts his score to a Z-score which he calculates to be 1.5. This corresponds to an actual test score of? B.) Boiling point measurements for a liquid under fluctuating pressure conditions is normally distributed with mean 98 degrees and standard deviation 0.5. The probability that a boiling point measurement exceeds 99 degrees...
Test scores are normally distributed with a mean of 500. Convert the given score to a...
Test scores are normally distributed with a mean of 500. Convert the given score to a z-score, using the given standard deviation. then find the percentage of students who score below 695 if the standard deviation is 130.
if scores on a certain medical test are normally distributed with mean 36 and standard deviation...
if scores on a certain medical test are normally distributed with mean 36 and standard deviation 4, what score or lower would place a score in the bottom 10% of scores
Suppose the scores on a reading ability test are normally distributed with a mean of 65...
Suppose the scores on a reading ability test are normally distributed with a mean of 65 and a standard deviation of 8. A) If one student is chosen at random, what is the probability that the student's score is greater than 81 points"? B) If 500 students took the reading ability test HOW MANY students would expect to earn a score greater than 81 points? c) Find the probability of randomly selecting 35 students (all from the same class) that...
Suppose exam scores are normally distributed with a mean of 70 and a standard deviation of...
Suppose exam scores are normally distributed with a mean of 70 and a standard deviation of 6. The probability that someone scores between a 70 and a 90 is?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT