Question

Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally...

Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed.

​(a) Test whether

μ1>μ2

at the

alphaαequals=0.10

level of significance for the given sample data.​(b) Construct a

99%

confidence interval about

μ1-μ2.

Population 1

Population 2

n

28

20

x overbarx

46.6

42.4

s

4.7

10.2

B.

H0​:

μ1=μ2

H1​:

μ1>μ2

Your answer is correct.

Find the test statistic for this hypothesis test.

?

​(Round to two decimal places as​ needed.)

Homework Answers

Answer #1

from above test statistic =1.72

reject HO

for above 99% CI =-2.646 ; 11.046 ( please try -2.803 ; 11.203 if this comes wrong)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether μ1>μ2 at the alphaαequals=0.10 level of significance for the given sample data.​(b) Construct a 90​% confidence interval about μ1−μ2. Population 1 Population 2 n 24 6 x overbarx 49.6 44.1 s 7.4 14.1
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether μ1>μ2 at the alphaαequals=0.01 level of significance for the given sample data.​ (b) Construct a 90​% confidence interval about μ1−μ2. Population 1 Population 2 n 24 23 x overbarx 45.1 43.4 s 5.8 12.7
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether mu 1μ1greater than>mu 2μ2 at the alphaαequals=0.10 level of significance for the given sample data. ​(b) Construct a 90​% confidence interval about mu μ1−μ2. Population 1 Population 2 n 23 19 x 46.2 45.1 s 5.1 13.4 Find the test statistic for the hypothesis test
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether mu 1 μ1 greater than > mu 2 μ2 at the alpha α equals = 0.05 0.05 level of significance for the given sample data. ​(b) Construct a 95​% confidence interval about mu 1 μ1 minus − mu 2 μ2. Population 1 Population 2 N 22    N 23 X 50.3 X 48.2 S 5.6 S 10.6 ​(a) Identify the...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally...
Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether mu 1greater thanmu 2 at the alphaequals0.05 level of significance for the given sample data. ​(b) Construct a 90​% confidence interval about mu 1minusmu 2. Population 1 Population 2 n 20 23 x overbar 50.7 46.9 s 4.8 12.8 ​(a) Identify the null and alternative hypotheses for this test. A. Upper H 0​: mu 1not equalsmu 2 Upper H 1​:...
Consider the following hypothesis statement using alphaαequals=0.10 and data from two independent samples. Assume the population...
Consider the following hypothesis statement using alphaαequals=0.10 and data from two independent samples. Assume the population variances are equal and the populations are normally distributed. Complete parts below. H0: μ1−μ2 = 0 x overbar 1 = 14.8 x overbar 2 = 13.0 H1: μ1−μ2 ≠ 0 s1= 2.8 s2 = 3.2 n1 = 21 n2 = 15 a.) what is the test statistic? b.) the critical values are c.) what is the p value?
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2...
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2 at the alpha equals 0.05α=0.05 level of significance for the given sample data.​(b) Construct a 9595​% confidence interval about mu 1 minus mu 2μ1−μ2. Population 1 Population 2 n 1717 1717 x overbarx 10.810.8 14.214.2 s 3.23.2 2.52.5 ​(a) Test whether mu 1 not equals mu 2μ1≠μ2 at the alpha equals 0.05α=0.05 level of significance for the given sample data. Determine the null and...
Consider the following sample data drawn independently from normally distributed populations with equal population variances. Sample...
Consider the following sample data drawn independently from normally distributed populations with equal population variances. Sample 1 Sample 2 11.2 11.4 11.5 12.1 7.7 12.7 10.7 10.2 10.2 10.2 9.1 9.9 9.3 10.9 11.6 12.7 a. Construct the relevant hypotheses to test if the mean of the second population is greater than the mean of the first population. a) H0: μ1 − μ2 = 0; HA: μ1 − μ2 ≠ 0 b) H0: μ1 − μ2 ≥ 0; HA: μ1...
Given in the table are the BMI statistics for random samples of men and women. Assume...
Given in the table are the BMI statistics for random samples of men and women. Assume that the two samples are independent simple random samples selected from normally distributed​ populations, and do not assume that the population standard deviations are equal. Complete parts​ (a) and​ (b) below. Use a 0.01 significance level for both parts. Male BMI Female BMI μ μ1 μ2 n 50 50 x̄ 27.7419 26.4352 s 8.437128 5.693359 a) Test the claim that males and females have...
Consider the following sample data and hypotheses. Assume that the populations are normally distributed with equal...
Consider the following sample data and hypotheses. Assume that the populations are normally distributed with equal variances. Sample Mean1 = 57                    s1 = 21.5            n1 = 22 Sample Mean2 = 43                    s2 = 15.2            n2 = 18 a. Construct the 90% Confidence Interval for the difference of the two means. H0:  μ1 – μ2 = 5                        HA:  μ1 – μ2 ≠ 5 b. Using the hypotheses listed above, conduct the following hypothesis test steps. Following the “Roadmap for Hypothesis Testing”,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT