Question

s Let X be a discrete random variable with probability mass function: f(x) = (1/3)*(3/4)^x for...

s Let X be a discrete random variable with probability mass function: f(x) = (1/3)*(3/4)^x for x = 1, 2, 3, . . .. (a) It can be shown that the moment generating function (MGF) exists for X if t < − ln(3/4). Derive the moment generating function, M(t). Note: Even if you recognize this distribution, you are graded on how you derive the MGF mathematically.

(b)using the mgf derive the mean and the variance of X

Homework Answers

Answer #1

here mgf Mx(t)= = = =(1/3)*(3et/4)/(1-3et/4)

Mx(t)=et/(4-3et)

b)

first derivative of mgf :M'x(t)=(d/dt)*et*(4-3et)-1= et*(4-3et)-1 +3e2t*(4-3et)-2

hence mean =E(X)=M'x(0)=e0*(4-3e0)-1 +3e2*0*(4-3e0)-2 =1+3 =4

second derivative of mgf :M''x(t)=(d/dt)*et*(4-3et)-1 +3e2t*(4-3et)-2 =et*(4-3et)-1 +3e2t*(4-3et)-2 +6e2t*(4-3et)-2+18e3t*(4-3et)-3

hence E(X2)=M''x(0) =e0*(4-3e0)-1 +3e2*0*(4-3e0)-2 +6e2*0*(4-3e0)-2+9e3*0*(4-3e0)-3 =1+3+6+18=28

hence Variance =E(X2)-(E(X))2 =28-42 =28-16 =12

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a discrete random variable X with probability mass function P(X = x) = p(x) =...
Consider a discrete random variable X with probability mass function P(X = x) = p(x) = C/3^x, x = 2, 3, 4, . . . a. Find the value of C. b. Find the moment generating function MX(t). c. Use your answer from a. to find the mean E[X]. d. If Y = 3X + 5, find the moment generating function MY (t).
The range of a discrete random variable X is {−1, 0, 1}. Let MX (t) be...
The range of a discrete random variable X is {−1, 0, 1}. Let MX (t) be the moment generating function of X, and let MX(1) = MX(2) = 0.5. Find the third moment of X, E(X^3).
The range of a discrete random variable X is {−1, 0, 1}. Let MX(t) be the...
The range of a discrete random variable X is {−1, 0, 1}. Let MX(t) be the moment generating function of X, and let MX(1) = MX(2) = 0.5. Find the third moment of X, E(X^3 )
Let X be a discrete random variable with probability mass function (pmf) P (X = k)...
Let X be a discrete random variable with probability mass function (pmf) P (X = k) = C *ln(k) for k = e; e^2 ; e^3 ; e^4 , and C > 0 is a constant. (a) Find C. (b) Find E(ln X). (c) Find Var(ln X).
1. Let X be a discrete random variable with the probability mass function P(x) = kx2...
1. Let X be a discrete random variable with the probability mass function P(x) = kx2 for x = 2, 3, 4, 6. (a) Find the appropriate value of k. (b) Find P(3), F(3), P(4.2), and F(4.2). (c) Sketch the graphs of the pmf P(x) and of the cdf F(x). (d) Find the mean µ and the variance σ 2 of X. [Note: For a random variable, by definition its mean is the same as its expectation, µ = E(X).]
(i) If a discrete random variable X has a moment generating function MX(t) = (1/2+(e^-t+e^t)/4)^2, all...
(i) If a discrete random variable X has a moment generating function MX(t) = (1/2+(e^-t+e^t)/4)^2, all t Find the probability mass function of X. (ii) Let X and Y be two independent continuous random variables with moment generating functions MX(t)=1/sqrt(1-t) and MY(t)=1/(1-t)^3/2, t<1 Calculate E(X+Y)^2
Let X, Y, and Z be independent and identically distributed discrete random variables, with each having...
Let X, Y, and Z be independent and identically distributed discrete random variables, with each having a probability distribution that puts a mass of 1/4 on the number 0, a mass of 1/4 at 1, and a mass of 1/2 at 2. a. Compute the moment generating function for S= X+Y+Z b. Use the MGF from part a to compute the second moment of S, E(S^2) c. Compute the second moment of S in a completely different way, by expanding...
Q6/   Let X be a discrete random variable defined by the following probability function x 2...
Q6/   Let X be a discrete random variable defined by the following probability function x 2 3 7 9 f(x) 0.15 0.25 0.35 0.25 Give   P(4≤  X < 8) ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ Q7/ Let X be a discrete random variable defined by the following probability function x 2 3 7 9 f(x) 0.15 0.25 0.35 0.25 Let F(x) be the CDF of X. Give  F(7.5) ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ Q8/ Let X be a discrete random variable defined by the following probability function : x 2 6...
Let X be a random variable with probability mass function P(X =1) =1/2, P(X=2)=1/3, P(X=5)=1/6 (a)...
Let X be a random variable with probability mass function P(X =1) =1/2, P(X=2)=1/3, P(X=5)=1/6 (a) Find a function g such that E[g(X)]=1/3 ln(2) + 1/6 ln(5). You answer should give at least the values g(k) for all possible values of k of X, but you can also specify g on a larger set if possible. (b) Let t be some real number. Find a function g such that E[g(X)] =1/2 e^t + 2/3 e^(2t) + 5/6 e^(5t)
Consider X has to be a normal random variable with mean μ and variance σ2 and...
Consider X has to be a normal random variable with mean μ and variance σ2 and moment generating function(MGF) MGF (t) = exp(μt + σ2t2 /2) 1. Find the MGFof Y = ax+b, where a and b are non-zero constants 2. By inspection identify what distribution this is