Question

A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each...

A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each algorithm is applied to a group of 49 sample problems. The new algorithm completes the sample problems with a mean time of 11.41 hours. The current algorithm completes the sample problems with a mean time of 13.41 hours. The standard deviation is found to be 4.040 hours for the new algorithm, and 4.742 hours for the current algorithm. Conduct a hypothesis test at the 0.05 level of significance of the claim that the new algorithm has a lower mean completion time than the current algorithm. Let μ1 be the true mean completion time for the new algorithm and μ2 be the true mean completion time for the current algorithm. Step 3 of 4 : Determine the decision rule for rejecting the null hypothesis H0. Round the numerical portion of your answer to three decimal places.

Homework Answers

Answer #1

Answer STEP 3 of 4

It is clear that the sample size is greater than 30, so this is a case of z distribution.

sample size given is 49 for both samples.

We have to use a significance level of 0.05

we have to test the claim that the new algorithm has a lower mean completion time than the current algorithm

According to claim, we have to test the alternate hypothesis or

so, this is a left tailed hypothesis

Now, using the z distribution critical value table for left tailed hypothesis

(for lower tailed or left tailed)

So, rejection rule will be that "if z statistics value is less than -1.645, then reject the null hypothesis"

because z value less -1.645, will give us significant result and we can reject the null hypothesis in that region

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each algorithm is applied to a group of 66 sample problems. The new algorithm completes the sample problems with a mean time of 10.24 hours. The current algorithm completes the sample problems with a mean time of 11.92 hours. The standard deviation is found to be 5.123 hours for the new algorithm, and 4.214 hours for the current algorithm. Conduct a hypothesis test at the...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each algorithm is applied to a group of 49 sample problems. The new algorithm completes the sample problems with a mean time of 19.11 hours. The current algorithm completes the sample problems with a mean time of 21.00 hours. The standard deviation is found to be 5.896 hours for the new algorithm, and 3.674 hours for the current algorithm. Conduct a hypothesis test at the...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each algorithm is applied to a group of 89 sample problems. The new algorithm completes the sample problems with a mean time of 17.64 hours. The current algorithm completes the sample problems with a mean time of 17.75 hours. The standard deviation is found to be 4.5614.561 hours for the new algorithm, and 4.210 hours for the current algorithm. Conduct a hypothesis test at the...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each algorithm is applied to a group of 36 sample problems. The new algorithm completes the sample problems with a mean time of 22.83 hours. The current algorithm completes the sample problems with a mean time of 23.06 hours. The standard deviation is found to be 3.511 hours for the new algorithm, and 3.471 hours for the current algorithm. Conduct a hypothesis test at the...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each algorithm is applied to a group of 44 sample problems. The new algorithm completes the sample problems with a mean time of 14.97 hours. The current algorithm completes the sample problems with a mean time of 17.81 hours. The standard deviation is found to be 4.448 hours for the new algorithm, and 3.520 hours for the current algorithm. Conduct a hypothesis test at the...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each algorithm is applied to a group of 48 sample problems. The new algorithm completes the sample problems with a mean time of 19.50 hours. The current algorithm completes the sample problems with a mean time of 21.16 hours. The standard deviation is found to be 3.608 hours for the new algorithm, and 4.538 hours for the current algorithm. Conduct a hypothesis test at the...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each algorithm is applied to a group of 51 sample problems. The new algorithm completes the sample problems with a mean time of 24.83 hours. The current algorithm completes the sample problems with a mean time of 27.75 hours. The standard deviation is found to be 4.193 hours for the new algorithm, and 4.285 hours for the current algorithm. Conduct a hypothesis test at the...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each algorithm is applied to a group of 76 sample problems. The new algorithm completes the sample problems with a mean time of 21.91 hours. The current algorithm completes the sample problems with a mean time of 23.08 hours. Assume the population standard deviation for the new algorithm is 5.316 hours, while the current algorithm has a population standard deviation of 4.853 hours. Conduct a...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each algorithm is applied to a group of 50 sample problems. The new algorithm completes the sample problems with a mean time of 17.92 hours. The current algorithm completes the sample problems with a mean time of 20.50 hours. The standard deviation is found to be 3.761 hours for the new algorithm, and 4.081 hours for the current algorithm. Conduct a hypothesis test at the...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each...
A systems analyst tests a new algorithm designed to work faster than the currently-used algorithm. Each algorithm is applied to a group of 70 sample problems. The new algorithm completes the sample problems with a mean time of 18.56 hours. The current algorithm completes the sample problems with a mean time of 20.22 hours. Assume the population standard deviation for the new algorithm is 5.291 hours, while the current algorithm has a population standard deviation of 3.428 hours. Conduct a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT