Question

So where does the Empirical rule come from? In symmetrical continuous data, a Z-transformed dataset has...

So where does the Empirical rule come from? In symmetrical continuous data, a Z-transformed dataset has μ = 0, and σ =1. This is also called a Standard Normal or standardized distribution. What is the probability that a value falls in the interval μ ± 1σ, that is compute the probability P(-1 < Z < 1). Round to four decimals and use leading zeros.

Homework Answers

Answer #1

Solution :

Empirical rule :

P( - 1< X < + 1) = 68%

P( - 2< X < + 2) = 95%

P( - 3< X < + 3) = 99.7%

The probability that a value falls in the interval is ,

P(-1 < Z < 1) = P(Z < 1) - P(Z < -1)= 0.8413 - 0.1587 = 0.6826

Probability = 0.6826

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. If the random variable Z has a standard normal distribution, then P(1.17 ≤ Z ≤...
1. If the random variable Z has a standard normal distribution, then P(1.17 ≤ Z ≤ 2.26) is A) 0.1091 B) 0.1203 C) 0.2118 D) 0.3944 2. Choose from the Following: Gaussian Distribution, Empirical Rule, Standard Normal, Random Variable, Inverse Normal, Normal Distribution, Approximation, Standardized, Left Skewed, or Z-Score. The [_______] is also referred to as the standard normal deviate or just the normal deviate. 3. The demand for a new product is estimated to be normally distributed with μ...
1) Choose from the Following: Gaussian Distribution, Empirical Rule, Standard Normal, Random Variable, Inverse Normal, Normal...
1) Choose from the Following: Gaussian Distribution, Empirical Rule, Standard Normal, Random Variable, Inverse Normal, Normal Distribution, Approximation, Standardized, Left Skewed, or Z-Score. Same as the Normal Distribution A statement whose reliability is based upon observation and experimental evidence; formulas based upon experience rather than mathematical conclusions. A [_______ ________] is a quantity resulting from a random experiment that can assume different values by chance. A result that is not exact, but is accurate enough for some specific purposes. The...
The built-in R dataset swiss gives Standardized fertility measure and socio-economic indicators for each of 47...
The built-in R dataset swiss gives Standardized fertility measure and socio-economic indicators for each of 47 French-speaking provinces of Switzerland at about 1888. The dataset is a data frame containing 6 columns (variables). The column Infant.Mortality represents the average number of live births who live less than 1 year over a 3-year period. We are interested in the Infant.Mortality column. We can convert the data in this colun to an ordinary vector x by making the assignment x <- swiss$Infant.Mortality....
1) Determine the following areas under the standard normal (z) curve. a) Between -1.5 and 2.5...
1) Determine the following areas under the standard normal (z) curve. a) Between -1.5 and 2.5 2) Consider babies born in the "normal" range of 37–43 weeks gestational age. A paper suggests that a normal distribution with mean μ = 3500 grams and standard deviation σ = 599 grams is a reasonable model for the probability distribution of the continuous numerical variable x = birth weight of a randomly selected full-term baby. a) How would you characterize the most extreme...
1)A normal distribution has μ = 24 and σ = 5. (a) Find the z score...
1)A normal distribution has μ = 24 and σ = 5. (a) Find the z score corresponding to x = 19. (b) Find the z score corresponding to x = 35. (c) Find the raw score corresponding to z = −2. (d) Find the raw score corresponding to z = 1.7. 2)Sketch the area under the standard normal curve over the indicated interval and find the specified area. (Round your answer to four decimal places.) The area to the left...
The built-in R dataset swiss gives Standardized fertility measure and socio-economic indicators for each of 47...
The built-in R dataset swiss gives Standardized fertility measure and socio-economic indicators for each of 47 French-speaking provinces of Switzerland at about 1888. The dataset is a data frame containing 6 columns (variables). The column Infant.Mortality represents the average number of live births who live less than 1 year over a 3-year period. We are interested in the Infant.Mortality column. We can convert the data in this colun to an ordinary vector x by making the assignment x <- swiss$Infant.Mortality....
1. Let x be a continuous random variable. What is the probability that x assumes a...
1. Let x be a continuous random variable. What is the probability that x assumes a single value, such as a (use numerical value)? 2. The following are the three main characteristics of a normal distribution. The total area under a normal curve equals _____. A normal curve is ___________ about the mean. Consequently, 50% of the total area under a normal distribution curve lies on the left side of the mean, and 50% lies on the right side of...
How much should a healthy kitten weigh? Suppose that a healthy 10-week-old (domestic) kitten should weigh...
How much should a healthy kitten weigh? Suppose that a healthy 10-week-old (domestic) kitten should weigh an average of μ = 26.3 ounces with a (95% of data) range from 14.8 to 37.8 ounces. Let x be a random variable that represents the weight (in ounces) of a healthy 10-week-old kitten. Assume that x has a distribution that is approximately normal. (a) The empirical rule (Section 7.1) indicates that for a symmetrical and bell-shaped distribution, approximately 95% of the data...
How much should a healthy kitten weigh? Suppose that a healthy 10-week-old (domestic) kitten should weigh...
How much should a healthy kitten weigh? Suppose that a healthy 10-week-old (domestic) kitten should weigh an average of μ = 24.7 ounces with a (95% of data) range from 14.6 to 34.8 ounces. Let x be a random variable that represents the weight (in ounces) of a healthy 10-week-old kitten. Assume that x has a distribution that is approximately normal. (a) The empirical rule (Section 7.1) indicates that for a symmetrical and bell-shaped distribution, approximately 95% of the data...
How much should a healthy kitten weigh? Suppose that a healthy 10-week-old (domestic) kitten should weigh...
How much should a healthy kitten weigh? Suppose that a healthy 10-week-old (domestic) kitten should weigh an average of μ = 26.3 ounces with a (95% of data) range from 15.8 to 36.8 ounces. Let x be a random variable that represents the weight (in ounces) of a healthy 10-week-old kitten. Assume that x has a distribution that is approximately normal. (a) The empirical rule (Section 7.1) indicates that for a symmetrical and bell-shaped distribution, approximately 95% of the data...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT