Question

Review: Central Limit Theorem 1 point possible (graded) The Central Limit Theorem states that if X1,…,Xn...

Review: Central Limit Theorem

1 point possible (graded)

The Central Limit Theorem states that if X1,…,Xn are i.i.d. and

E[X1]=μ<∞ ; Var(X1)=σ2<∞,

then

n−−√[(1n∑i=1nXi)−μ]−→−−n→∞(d)Wwhere W∼N(0,?).

What is Var(W)? (Express your answer in terms of n, μ and σ).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is wrong with the following statement of the central limit theorem? Central Limit Theorem.  If the...
What is wrong with the following statement of the central limit theorem? Central Limit Theorem.  If the random variables X1, X2, X3, …, Xn are a random sample of size n from any distribution with finite mean μ and variance σ2, then the distribution of will be approximately normal, with a standard deviation of σ / √n.
Review: Manipulating Multivariate Gaussians 1 point possible (graded) Recall that a multivariate Gaussian N(μ⃗ ,Σ) is...
Review: Manipulating Multivariate Gaussians 1 point possible (graded) Recall that a multivariate Gaussian N(μ⃗ ,Σ) is a random vector Z=[Z(1),…,Z(n)]T where Z(1),…,Z(n) are jointly Gaussian , meaning that the density of Z is given by the joint pdf f:Rn → R Z ↦ 1(2π)n/2det(Σ)−−−−−−√exp(−12(Z−μ⃗ )TΣ−1(Z−μ⃗ )) where μ⃗ i =E[Z(i)],(vector mean). Σij =Cov(Z(i),Z(j))(positive definite covariance matrix). Suppose that Z∼N(0,Σ). Let M denote an n×n matrix. What is the distribution of MZ?
Confidence interval Concept Check 1 point possible (graded) As in the previous section, let X1,…,Xn∼iidexp(λ). Let...
Confidence interval Concept Check 1 point possible (graded) As in the previous section, let X1,…,Xn∼iidexp(λ). Let λˆn:=n∑ni=1Xi denote an estimator for λ. We know by now that λˆn is a consistent and asymptotically normal estimator for λ. Recall qα/2 denote the 1−α/2 quantile of a standard Gaussian. By the Delta method: λ∈[λˆn−qα/2λn−−√,λˆn+qα/2λn−−√]=:I with probability 1−α. However, I is still not a confidence interval for λ. Why is this the case?
Method of Moments Concept Question II 1 point possible (graded) Let (E,{Pθ}θ∈Θ) denote a statistical model...
Method of Moments Concept Question II 1 point possible (graded) Let (E,{Pθ}θ∈Θ) denote a statistical model associated to a statistical experiment X1,…,Xn∼iidPθ∗ where θ∗∈Θ is the true parameter. Assume that Θ⊂Rd for some d≥1. Let mk(θ):=E[Xk] where X∼Pθ. mk(θ) is referred to as the k-th moment of Pθ . Also define the moments map: ψ:Θ →Rd θ ↦(m1(θ),m2(θ),…,md(θ)). What conditions on ψ do we have to assume so that the method of moments produces a consistent and asymptotically normal estimator?...
1. The Central Limit Theorem A. States that the OLS estimator is BLUE B. states that...
1. The Central Limit Theorem A. States that the OLS estimator is BLUE B. states that the mean of the sampling distribution of the mean is equal to the population mean C. none of these D. states that the mean of the sampling distribution of the mean is equal to the population standard deviation divided by the square root of the sample size 2. Consider the regression equation Ci= β0+β1 Yi+ ui where C is consumption and Y is disposable...
(05.02 LC) The Central Limit Theorem says that when sample size n is taken from any...
(05.02 LC) The Central Limit Theorem says that when sample size n is taken from any population with mean μ and standard deviation σ when n is large, which of the following statements are true? (4 points) I. The distribution of the sample mean is exactly Normal. II. The distribution of the sample mean is approximately Normal. III. The standard deviation is equal to that of the population. IV. The distribution of the population is exactly Normal. a I and...
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!,...
Let X1, . . . , Xn be i.i.d from pmf f(x|λ) where f(x) = (e^(−λ)*(λ^x))/x!, λ > 0, x = 0, 1, 2 a) Find MoM (Method of Moments) estimator for λ b) Show that MoM estimator you found in (a) is minimal sufficient for λ c) Now we split the sample into two parts, X1, . . . , Xm and Xm+1, . . . , Xn. Show that ( Sum of Xi from 1 to m, Sum...
1. Let X1, . . . , Xn be i.i.d. continuous RVs with density pθ(x) =...
1. Let X1, . . . , Xn be i.i.d. continuous RVs with density pθ(x) = e−(x−θ), x ≥ θ for some unknown θ > 0. Be sure to notice that x ≥ θ. (This is an example of a shifted Exponential distribution.) (a) Set up the integral you would solve for find the population mean (in terms of θ); be sure to specify d[blank]. (You should set up the integral by hand, but you can use software to evaluate...
The weak law of large numbers states that the mean of a sample is a consistent...
The weak law of large numbers states that the mean of a sample is a consistent estimator of the mean of the population. That is, as we increase the sample size, the mean of the sample converges in probability to the expected value of the distribution that the data comes from, provided that expected value is finite. Consider a numerical example, a Student t distribution with n = 5, the same as we have already seen earlier in this module....
Reconsider the game of roulette. Recall that when you bet $1 on a color, you have...
Reconsider the game of roulette. Recall that when you bet $1 on a color, you have an 18/38 probability of winning $1 and a 20/38 probability of losing $1 (for a net winnings of -$1). Consider playing for a random sample of n = 4 spins, and consider the statistic x-bar = sample mean of your net winnings per spin. a) Determine the (exact) sampling distribution of x-bar. [Hint: Start by listing the possible values of x-bar. Then use the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT