Question

How do you solve - let X & Y be random variables of the continuous type...

How do you solve - let X & Y be random variables of the continuous type having the joint pdf f(x,y)=2, 0≤y≤x≤1

find the marginal PDFs of X & Y

Compute μx, μy, var(x), var(y), Cov(X,Y), and ρ

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X and Y are two jointly continuous random variables with joint PDF ??,(?, ?)...
Suppose that X and Y are two jointly continuous random variables with joint PDF ??,(?, ?) = ??                     ??? 0 ≤ ? ≤ 1 ??? 0 ≤ ? ≤ √?                     0                        ??ℎ?????? Compute and plot ??(?) and ??(?) Are X and Y independent? Compute and plot ??(?) and ???(?) Compute E(X), Var(X), E(Y), Var(Y), Cov(X,Y), and Cor.(X,Y)
Let X & Y be two continuous random variables with joint pdf: fXY(X,Y) = { 2...
Let X & Y be two continuous random variables with joint pdf: fXY(X,Y) = { 2 x+y =< 1, x >0, y>0 { 0 otherwise find Cov(X,Y) and ρX,Y
Let X, Y be two random variables with a joint pmf f(x,y)=(x+y)/12 x=1,2 and y=1,2 zero...
Let X, Y be two random variables with a joint pmf f(x,y)=(x+y)/12 x=1,2 and y=1,2 zero elsewhere a)Are X and Y discrete or continuous random variables? b)Construct and joint probability distribution table by writing these probabilities in a rectangular array, recording each marginal pmf in the "margins" c)Determine if X and Y are Independent variables d)Find P(X>Y) e)Compute E(X), E(Y), E(X^2) and E(XY) f)Compute var(X) g) Compute cov(X,Y)
Let X and Y be continuous random variable with joint pdf f(x,y) = y/144 if 0...
Let X and Y be continuous random variable with joint pdf f(x,y) = y/144 if 0 < 4x < y < 12 and 0 otherwise Find Cov (X,Y).
Suppose X and Y are continuous random variables with joint density function f(x,y) = x +...
Suppose X and Y are continuous random variables with joint density function f(x,y) = x + y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (a). Compute the joint CDF F(x,y). (b). Compute the marginal density for X and Y . (c). Compute Cov(X,Y ). Are X and Y independent?
9. Suppose X and Y are continuous random variables with joint density function f(x,y) = x...
9. Suppose X and Y are continuous random variables with joint density function f(x,y) = x + y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (a). Compute the joint CDF F(x,y). (b). Compute the marginal density for X and Y . (c). Compute Cov(X,Y ). Are X and Y independent?
19. Let X and Y be continuous random variables with joint pdf: f(x, y) = x−y...
19. Let X and Y be continuous random variables with joint pdf: f(x, y) = x−y for 0 ≤ y ≤ 1 and 1 ≤ x ≤ 2. If U = XY and V = X/Y , calculate the joint pdf of U and V , fUV (u, v).
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0...
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0 < x < < y < 1 and 0 otherwise. Find the marginal pdf of T if S=X and T = XY. Use the joint pdf of S = X and T = XY.
Suppose X and Y are continuous random variables with joint pdf f(x,y) = x + y,...
Suppose X and Y are continuous random variables with joint pdf f(x,y) = x + y, 0 < x< 1, 0 < y< 1. Let W = max(X,Y). Find EW.
Consider continuous random variables X and Y whose joint pdf is f(x, y) = 1 with...
Consider continuous random variables X and Y whose joint pdf is f(x, y) = 1 with 0 < y < 1 − |x|. Show that Cov(X, Y ) = 0 even though X and Y are dependent. Note: For this problem, you only need to show that the covariance is zero. You need not show that X and Y are dependent.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT