Question

Markov Chain Transition Matrix for a three state system. 1 - Machine 1: 2- Machine 2:...

Markov Chain

Transition Matrix for a three state system. 1 - Machine 1: 2- Machine 2: 3- Inspection

1 2 3
1 0.05 0 .95
2 0 0.05 .95
3 .485 .485 .03

A. For a part starting at Machine 1, determine the average number of visits this part has to each state. (mean time until absorption, I believe)

B. 1-1, 2-2, & 3-3 represent BAD units (stays at state).

If a batch of 1000 units is started on Machine 1, determine average number of completed good, units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
urgent Consider the Markov chain with state space {0, 1, 2, 3, 4} and transition probability...
urgent Consider the Markov chain with state space {0, 1, 2, 3, 4} and transition probability matrix (pij ) given   2 3 1 3 0 0 0 1 3 2 3 0 0 0 0 1 4 1 4 1 4 1 4 0 0 1 2 1 2 0 0 0 0 0 1   Find all the closed communicating classes Consider the Markov chain with state space {1, 2, 3} and transition matrix  ...
Given the probability transition matrix of a Markov chain X(n) with states 1, 2 and 3:...
Given the probability transition matrix of a Markov chain X(n) with states 1, 2 and 3: X = [{0.2,0.4,0.4}, {0.3,0.3,0.4}, {0.2,0.6,0.2}] find P(X(10)=2|X(9)=3).
A Markov chain X0, X1, ... on states 0, 1, 2 has the transition probability matrix...
A Markov chain X0, X1, ... on states 0, 1, 2 has the transition probability matrix P = {0.1 0.2 0.7        0.9 0.1   0        0.1 0.8 0.1} and initial distribution p0 = Pr{X0 = 0} = 0.3, p1 = Pr{X0 = 1} = 0.4, and p2 = Pr{X0 = 2} = 0.3. Determine Pr{X0 = 0, X1 = 1, X2 = 2}. Please tell me what it means of the initial distribution why initial distribution p0 = Pr{X0...
Let {??,?=0,1,2,…} be a Markov chain with the state space ?={0,1,2,3,…}. The transition probabilities are defined...
Let {??,?=0,1,2,…} be a Markov chain with the state space ?={0,1,2,3,…}. The transition probabilities are defined as follows: ?0,0=1, ??,?+1=? and ??,?−1=1−?, for ?≥1. In addition, suppose that 12<?<1. For an arbitrary state d such that ?∈?,?≠0, compute ?(??>0 ??? ??? ?≥1 |?0=?).
Consider a Markov chain {Xn; n = 0, 1, 2, . . . } on S...
Consider a Markov chain {Xn; n = 0, 1, 2, . . . } on S = N = {0, 1, 2, . . . } with transition probabilities P(x, 0) = 1/2 , P(x, x + 1) = 1/2 ∀x ∈ S, . (a) Show that the chain is irreducible. (b) Find P0(T0 = n) for each n = 1, 2, . . . . (c) Use part (b) to show that state 0 is recurrent; i.e., ρ00 =...
You are given a transition matrix P. Find the steady-state distribution vector. HINT [See Example 4.]...
You are given a transition matrix P. Find the steady-state distribution vector. HINT [See Example 4.] A) P = 5/6 1/6 7/9 2/9 B) P = 1/5 4/5 0 5/8 3/8 0 4/7 0 3/7
Consider a batch manufacturing process in which a machine processes jobs in batches of three units....
Consider a batch manufacturing process in which a machine processes jobs in batches of three units. The process starts only when there are three or more jobs in the buffer in front of the machine. Otherwise, the machine stays idle until the batch is completed. Assume that job interarrival times are uniformly distributed between 2 and 8 hours, and batch service times are uniformly distributed between 5 and 15 hours. Assuming the system is initially empty, simulate the system manually...
(1) In a 2 state system, an unreliable machine has a 10% chance of breaking down...
(1) In a 2 state system, an unreliable machine has a 10% chance of breaking down and a 60% chance of being repaired. At a steady state, what is the probability that the machine is down? Enter your answer as a percentage (XX.X) (2) For the system described in problem (1) above, what is the probability that the machine is up?Continue to assume that the system is at a steady-state. Enter your answer as a percentage (XX.X) 3) What is...
please post solutions using R Consider a batch manufacturing process in which a machine processes jobs...
please post solutions using R Consider a batch manufacturing process in which a machine processes jobs in batches of three units. The process starts only when there are three or more jobs in the buffer in front of the machine. Otherwise, the machine stays idle until the batch is completed. Assume that job interarrival times are uniformly distributed between 2 and 8 hours, and batch service times are uniformly distributed between 5 and 15 hours. Assuming the system is initially...
Problem 1.18 Values for some properties of the n = 1 state of the Bohr model...
Problem 1.18 Values for some properties of the n = 1 state of the Bohr model of the hydrogen atom are given in the following table. Write the value of the same parameter (in the same units) for the n = 2 state. parameter n = 1 n = 2 momentum (kgms) 1.99 ⋅ 10-24 de Broglie wavelength (nm) 0.333 kinetic energy (Eh) 0.500 transition energy to n = 3 (Eh) 0.444 Part A Determine the momentum for the n...