Question

IV. Your friend mentions that pre-test measures was taken and wants to take that information into...

IV. Your friend mentions that pre-test measures was taken and wants to take that information into account. You suggest using the pre-test value as a covariate to see what effect does it have on the response. First you fit a simple linear regression of diastolic on pre-diastolic.

Call:

lm(formula = diastolic ~ prediastolic, data = a)

Residuals:

    Min      1Q Median      3Q     Max

-11.268 -4.627   1.101   3.652 10.644

Coefficients:

             Estimate Std. Error t value Pr(>|t|)   

(Intercept)   30.7307     9.9041   3.103 0.00485 **

prediastolic   0.6177     0.1127   5.479 1.24e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.996 on 24 degrees of freedom

(1 observation deleted due to missingness)

Multiple R-squared: 0.5558, Adjusted R-squared: 0.5372

F-statistic: 30.02 on 1 and 24 DF, p-value: 1.241e-05

a. What is the correlation coefficient for the variables diastolic and prediastolic? ________

b. Explain to your friend the regression coefficient of 0.6177 (give units).

c. What hypotheses are being tested with the Pr(>|t|)

d. Would you conclude that a linear relationship exists between the two variables? Why?

Homework Answers

Answer #1

a.

The correlation coefficient for the variables diastolic and prediastolic is square root of Multiple R-squared.

correlation coefficient for the variables diastolic and prediastolic = = 0.74552

b.

The regression coefficient of 0.6177 means that with one mm of increase in prediastolic pressure, the diastolic pressure would increase by 0.6177 mm.

c.

The hypotheses are being tested with the Pr(>|t|) are

For Intercept,

For prediastolic,

d.

Since the p-value of Pre-diastolic coefficient is 1.241e-05 which is less than the significance level of 0.05, we reject the null hypothesis and conclude that there is significant evidence that the slope coefficient of the linear model is not zero and hence the linear relationship exists between the two variables.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the...
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the summary output for this simple linear regression model. > Model2 <- lm(LifeExpect2017~ AverageDailyPM2.5) > summary(Model2) Call: lm(formula = LifeExpect2017 ~ AverageDailyPM2.5) Residuals: Min 1Q Median 3Q Max -17.1094 -1.7516 0.0592 1.7208 18.4604 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 81.6278 0.2479 329.23 <2e-16 *** AverageDailyPM2.5 -0.4615 0.0267 -17.29 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘...
3.) Now, you are going to run the multivariable linear regression model you just created. For...
3.) Now, you are going to run the multivariable linear regression model you just created. For credit: Provide your model command and summary command below along with all the output for your model summary. Model1 <- lm(LifeExpect2017~HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate ) > summary(Model1) Call: lm(formula = LifeExpect2017 ~ HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate) Residuals: Min 1Q Median 3Q Max -5.4550 -0.8559 0.0309 0.8038 7.1801 Coefficients: Estimate Std. Error t value Pr(>|t|)...
Marketing date on sales is presented for youtube. data are the advertising budget in thousands of...
Marketing date on sales is presented for youtube. data are the advertising budget in thousands of dollars along with the sales. The experiment has been repeated 200 times with different budgets and the observed sales have been recorded. The simple linear regression model was fitted: ## ## Call: ## lm(formula = sales ~ youtube, data = marketing) ## ## Residuals: ## Min 1Q Median 3Q Max ## -10.06 -2.35 -0.23 2.48 8.65 ## ## Coefficients: ## Estimate Std. Error t...
3.) Now, you are going to run the multivariable linear regression model you just created. For...
3.) Now, you are going to run the multivariable linear regression model you just created. For credit: Provide your model command and summary command below along with all the output for your model summary. Model1 <- lm(LifeExpect2017~HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate ) > summary(Model1) Call: lm(formula = LifeExpect2017 ~ HouseholdIncome + Diabetic + FoodInsecure + Uninsured + DrugOverdoseMortalityRate) Residuals: Min 1Q Median 3Q Max -5.4550 -0.8559 0.0309 0.8038 7.1801 Coefficients: Estimate Std. Error t value Pr(>|t|)...
Residuals:     Min      1Q Median      3Q     Max -6249.5 -382.9 -139.3    25.6 31164.7 Coefficients:         &nbs
Residuals:     Min      1Q Median      3Q     Max -6249.5 -382.9 -139.3    25.6 31164.7 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) 1.311e+02 2.219e+02   0.591   0.5550    debt         1.283e-01 3.288e-01   0.390   0.6966    sales        2.942e-01 1.366e-01   2.154   0.0321 * income       1.546e+01 2.697e+00   5.730 2.42e-08 *** assets      -2.390e-05 4.839e-03 -0.005   0.9961    seo          2.973e+02 2.627e+02   1.132   0.2587    --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2019 on 303 degrees of freedom Multiple R-squared: 0.258,   Adjusted...
> muncy = lm(hit_distance~launch_speed, data=muncy) > summary(muncy) Call: lm(formula = hit_distance ~ launch_speed, data = muncy)...
> muncy = lm(hit_distance~launch_speed, data=muncy) > summary(muncy) Call: lm(formula = hit_distance ~ launch_speed, data = muncy) Residuals:     Min      1Q Median      3Q     Max -258.24 -105.23   23.29 116.06 174.73 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) -240.8429    36.6769 -6.567 1.46e-10 *** launch_speed    4.8800     0.4022 12.134 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 122.4 on 438 degrees of freedom Multiple R-squared: 0.2516, Adjusted R-squared: 0.2499 F-statistic:...
Can you give me a simple interpretation of this output? Call: lm(formula = NOCRF ~ Mktrf...
Can you give me a simple interpretation of this output? Call: lm(formula = NOCRF ~ Mktrf + HML + SMB + SMB2) Residuals:      Min       1Q   Median       3Q      Max -10.1560 -0.6880 -0.0254 0.6660 21.9700 Coefficients:             Estimate Std. Error t value Pr(>|t|)    (Intercept) -0.01163    0.02800 -0.415    0.678    Mktrf        1.25614    0.02389 53.540 <2e-16 *** HML          2.01719    0.04238 47.602   <2e-16 *** SMB         -0.05150    0.04769 -1.080    0.280    SMB2         0.03180    0.03545   0.897    0.372 --- Signif. codes: 0 ‘***’ 0.001...
4.-Interpret the following regression model Call: lm(formula = log(Sale.Price) ~ Lot.Size + Square.Feet + Num.Baths +...
4.-Interpret the following regression model Call: lm(formula = log(Sale.Price) ~ Lot.Size + Square.Feet + Num.Baths + dis_coast + API.2011 + dis_fwy + dis_down + Pool, data = Training) Residuals: Min 1Q Median 3Q Max -2.17695 -0.23519 -0.00112 0.26471 1.02810 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.630e+00 2.017e-01 47.756 < 2e-16 *** Lot.Size -2.107e-06 3.161e-07 -6.666 4.78e-11 *** Square.Feet 2.026e-04 3.021e-05 6.705 3.71e-11 *** Num.Baths 6.406e-02 2.629e-02 2.437 0.015031 * dis_coast -1.827e-05 6.881e-06 -2.655 0.008077 ** API.2011 3.459e-03 2.356e-04...
Using the following data taking out of R (summary): Call: lm(formula = dys_detect ~ fin_loss, data...
Using the following data taking out of R (summary): Call: lm(formula = dys_detect ~ fin_loss, data = Lab5, na.action = na.exclude) Residuals: Min 1Q Median 3Q Max -582.66 -274.75 13.53 273.92 589.06 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 385.362 77.360 4.981 8.72e-07 *** fin_loss 3.248 1.523 2.133 0.0334 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 316.6 on 498 degrees of freedom Multiple R-squared: 0.009052,   Adjusted R-squared:...
Consider the following regression run in R, which uses engine size in liters, horsepower, weight, and...
Consider the following regression run in R, which uses engine size in liters, horsepower, weight, and domestic vs foreign manufacturer to predict mileage: ------------------------------------------------------------------------------------------------------ > summary(lm(highwaympg~displacement+hp+weight+domestic)) Call: lm(formula = highwaympg ~ displacement + hp + weight + domestic) Residuals:     Min      1Q  Median      3Q     Max -6.9530 -1.6997 -0.1708 1.6452 11.4028 Coefficients:               Estimate Std. Error t value Pr(>|t|)    (Intercept) 53.849794   2.090657 25.757 < 2e-16 *** displacement 1.460873   0.748837   1.951   0.0543 . hp           -0.009802   0.011356 -0.863   0.3904    weight       -0.008700   0.001094 -7.951 6.23e-12 *** domestic     -0.939918   0.762175 -1.233   0.2208    ---...