Question

Using techniques from an earlier section, we can find a confidence interval for μd. Consider a...

Using techniques from an earlier section, we can find a confidence interval for μd. Consider a random sample of n matched data pairs A, B. Let d = BA be a random variable representing the difference between the values in a matched data pair. Compute the sample mean d of the differences and the sample standard deviation sd. If d has a normal distribution or is mound-shaped, or if n ≥ 30, then a confidence interval for μd is as follows. dE < μd < d + E , where

E = tc

sd
n



c = confidence level (0 < c < 1)

tc = critical value for confidence level c and d.f. = n − 1

B: Percent increase
for company
16 16 30 18 6 4 21 37
A: Percent increase
for CEO
22 27 19 14

−4

19 15 30

(a) Using the data above, find a 95% confidence interval for the mean difference between percentage increase in company revenue and percentage increase in CEO salary. (Round your answers to two decimal places.)

lower limit     =
upper limit     =

Homework Answers

Answer #1

sample mean, xbar = 0.75
sample standard deviation, s = 9.9964
sample size, n = 8
degrees of freedom, df = n - 1 = 7

Given CI level is 95%, hence α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025, tc = t(α/2, df) = 2.365


ME = tc * s/sqrt(n)
ME = 2.365 * 9.9964/sqrt(8)
ME = 8.359

CI = (xbar - tc * s/sqrt(n) , xbar + tc * s/sqrt(n))
CI = (0.75 - 2.365 * 9.9964/sqrt(8) , 0.75 + 2.365 * 9.9964/sqrt(8))
CI = (-7.61 , 9.11)


lower limit     = -7.61
upper limit     = 9.11

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a...
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a random sample of n matched data pairs A, B. Let d = B − A be a random variable representing the difference between the values in a matched data pair. Compute the sample mean d of the differences and the sample standard deviation sd. If d has a normal distribution or is mound-shaped, or if n ≥ 30, then a confidence interval for μd...
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a...
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a random sample of n matched data pairs A, B. Let d = B − A be a random variable representing the difference between the values in a matched data pair. Compute the sample mean d of the differences and the sample standard deviation sd. If d has a normal distribution or is mound-shaped, or if n ≥ 30, then a confidence interval for μd...
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a...
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a random sample of n matched data pairs A, B. Let d = B − A be a random variable representing the difference between the values in a matched data pair. Compute the sample mean d of the differences and the sample standard deviation sd. If d has a normal distribution or is mound-shaped, or if n ≥ 30, then a confidence interval for μd...
Use a t-distribution to find a confidence interval for the difference in means μd=μ1-μ2 using the...
Use a t-distribution to find a confidence interval for the difference in means μd=μ1-μ2 using the relevant sample results from paired data. Assume the results come from random samples from populations that are approximately normally distributed, and that differences are computed using d=x1-x2. A 99% confidence interval for μd using the paired data in the following table: Case 1 2 3 4 5 Treatment 1 22 29 32 25 27 Treatment 2 18 31 26 21 21 Give the best...
Use a t-distribution to find a confidence interval for the difference in means μd=μ1-μ2 using the...
Use a t-distribution to find a confidence interval for the difference in means μd=μ1-μ2 using the relevant sample results from paired data. Assume the results come from random samples from populations that are approximately normally distributed, and that differences are computed using d=x1-x2. A 95% confidence interval for μd using the paired data in the following table: Case Situation 1 Situation 2 1 77 87 2 81 86 3 95 91 4 61 79 5 71 77 6 72 62...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer. Are America's top chief executive officers (CEOs) really worth all that money? One way to answer this question is to look at row B, the annual...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer. Are America's top chief executive officers (CEOs) really worth all that money? One way to answer this question is to look at row B, the annual...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer. Are America's top chief executive officers (CEOs) really worth all that money? One way to answer this question is to look at row B, the annual...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer. Are America's top chief executive officers (CEOs) really worth all that money? One way to answer this question is to look at row B, the annual...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer. Are America's top chief executive officers (CEOs) really worth all that money? One way to answer this question is to look at row B, the annual...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT