Question

A researcher compares two compounds (1 and 2) used in the manufacture of car tires that...

A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. The mean braking distance for SUVs equipped with tires made with compound 1 is 67 feet, with a population standard deviation of 11.5. The mean braking distance for SUVs equipped with tires made with compound 2 is 72 feet, with a population standard deviation of 10.8. Suppose that a sample of 72 braking tests are performed for each compound. Using these results, test the claim that the braking distance for SUVs equipped with tires using compound 1 is shorter than the braking distance when compound 2 is used. Let μ1 be the true mean braking distance corresponding to compound 1 and μ2 be the true mean braking distance corresponding to compound 2. Use the 00.05 level of significance.

Step 1 of 5:

State the null and alternative hypotheses for the test.

Step 2 of 5:

Compute the value of the test statistic. Round your answer to two decimal places.

Step 3 of 5:

Find the p-value associated with the test statistic. Round your answer to four decimal places.

Step 4 of 5:

Make the decision for the hypothesis test.

Step 5 of 5:

State the conclusion of the hypothesis test.

Homework Answers

Answer #1

The statistical software output for this problem is:

Hence,

Step - 1: Hypotheses:

H0 : μ1 = μ2
H1 : μ1 < μ2

Step - 2: Test statistic = -2.69

Step - 3: p - Value = 0.0036

Step - 4: Decision: Reject Ho if z < -1.645

Step - 5: Reject Null Hypothesis

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. The mean braking distance for SUVs equipped with tires made with compound 1 is 55 feet, with a population standard deviation of 5.6. The mean braking distance for SUVs equipped with tires made with compound 2 is 60 feet, with a population standard deviation of 14.2. Suppose that a sample of 69...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. The mean braking distance for SUVs equipped with tires made with compound 1 is 41 feet, with a population standard deviation of 12.2. The mean braking distance for SUVs equipped with tires made with compound 2 is 47 feet, with a population standard deviation of 5.4. Suppose that a sample of 45...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. SUVs equipped with tires using compound 1 have a mean braking distance of 78 feet and a standard deviation of 14.9 feet. SUVs equipped with tires using compound 2 have a mean braking distance of 86 feet and a standard deviation of 5.9 feet. Suppose that a sample of 7979 braking tests...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. SUVs equipped with tires using compound 1 have a mean braking distance of 53 feet and a standard deviation of 8.2 feet. SUVs equipped with tires using compound 2 have a mean braking distance of 59 feet and a standard deviation of 12.1 feet. Suppose that a sample of 47 braking tests...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. SUVs equipped with tires using compound 1 have a mean braking distance of 77 feet and a standard deviation of 12.8 feet. SUVs equipped with tires using compound 2 have a mean braking distance of 85 feet and a standard deviation of 5.3 feet. Suppose that a sample of 33 braking tests...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. SUVs equipped with tires using compound 1 have a mean braking distance of 6060 feet and a standard deviation of 10.210.2 feet. SUVs equipped with tires using compound 2 have a mean braking distance of 6262 feet and a standard deviation of 9.09.0 feet. Suppose that a sample of 8989 braking tests...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. SUVs equipped with tires using compound 1 have a mean braking distance of 6262 feet and a standard deviation of 10.610.6 feet. SUVs equipped with tires using compound 2 have a mean braking distance of 6868 feet and a standard deviation of 13.913.9 feet. Suppose that a sample of 7777 braking tests...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. SUVs equipped with tires using compound 1 have a mean braking distance of 5050 feet and a standard deviation of 13.413.4 feet. SUVs equipped with tires using compound 2 have a mean braking distance of 5858 feet and a standard deviation of 10.510.5 feet. Suppose that a sample of 7373 braking tests...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. SUVs equipped with tires using compound 1 have a mean braking distance of 62 feet and a standard deviation of 10.6 feet. SUVs equipped with tires using compound 2 have a mean braking distance of 6868 feet and a standard deviation of 13.9 feet. Suppose that a sample of 77 braking tests...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that...
A researcher compares two compounds (1 and 2) used in the manufacture of car tires that are designed to reduce braking distances for SUVs equipped with the tires. SUVs equipped with tires using compound 1 have a mean braking distance of 64 feet and a standard deviation of 5.4 feet. SUVs equipped with tires using compound 2 have a mean braking distance of 69 feet and a standard deviation of 9.6 feet. Suppose that a sample of 76 braking tests...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT