Question

The random variables X and Y have the joint density: fX,Y(x,y)={x+y 0<x<1,0<y<1 0 otherwise} For each...

The random variables X and Y have the joint density:

fX,Y(x,y)={x+y 0<x<1,0<y<1

0 otherwise}



For each of the following, please provide answers as fractions, or find the answer to three decimal places:

(a) Var(X)

(b) Var(Y)

(c) Cov(X,Y)

(d) ρ(X,Y)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
* The random variables X and Y have a joint density function given by fX,Y(x, y)...
* The random variables X and Y have a joint density function given by fX,Y(x, y) = ⇢ 1/y, 0 < y < 1, 0 < x < y, 0, otherwise. Compute (a) Cov(X,Y) and (b) Corr(X,Y).
2. Random variables X and Y have a joint PDF fX,Y (x, y) = 2 for...
2. Random variables X and Y have a joint PDF fX,Y (x, y) = 2 for 0 ≤ y ≤ x ≤ 1. Determine (a) E[X] and Var[X]. (b) E[Y ] and Var[Y ]. (c) Cov(X, Y ). (d) E[X + Y ]. (e) Var[X + Y ].
Let X and Y be a random variables with the joint probability density function fX,Y (x,...
Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { cx2y, 0 < x2 < y < x for x > 0 0, otherwise }. compute the marginal probability density functions fX(x) and fY (y). Are the random variables X and Y independent?.
Let fX,Y be the joint density function of the random variables X and Y which is...
Let fX,Y be the joint density function of the random variables X and Y which is equal to fX,Y (x, y) = { x + y if 0 < x, y < 1, 0 otherwise. } Compute the probability density function of X + Y . Referring to the problem above, compute the marginal probability density functions fX(x) and fY (y). Are the random variables X and Y independent?
A joint density function is given by fX,Y (x, y) = ( kx, 0 < x...
A joint density function is given by fX,Y (x, y) = ( kx, 0 < x < 1, 0 < y < 1 0, otherwise. (a) Calculate k (b) Calculate marginal density function fX(x) (c) Calculate marginal density function fY (y) (d) Compute P(X < 0.5, Y < 0.1) (e) Compute P(X < Y ) (f) Compute P(X < Y |X < 0.5) (g) Are X and Y independent random variables? Show your reasoning (no credit for yes/no answer). (h)...
Suppose X and Y are continuous random variables with joint density function fX;Y (x; y) =...
Suppose X and Y are continuous random variables with joint density function fX;Y (x; y) = x + y on the square [0; 3] x [0; 3]. Compute E[X], E[Y], E[X2 + Y2], and Cov(3X - 4; 2Y +3).
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0&
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0             ,     otherwise a. Find the value of the constant c. b. Find P[x < 1 and  y < 2]
The random variables X and Y have a joint density function given by f(x, y) =...
The random variables X and Y have a joint density function given by f(x, y) = ( 2e(−2x) /x, 0 ≤ x < ∞, 0 ≤ y ≤ x , otherwise. (a) Compute Cov(X, Y ). (b) Find E(Y | X). (c) Compute Cov(X,E(Y | X)) and show that it is the same as Cov(X, Y ). How general do you think is the identity that Cov(X,E(Y | X))=Cov(X, Y )?
The joint probability density function of two random variables (X and Y) is given by fX,Y...
The joint probability density function of two random variables (X and Y) is given by fX,Y (x, y) = ( C √y (y ^(α+1)) exp {( − y(2β+x ^2 ) )/2 } , x ∈ (−∞,∞), y ∈ [0,∞), 0 otherwise. (a) Find C. (b) Find the marginal density of Y . What type of distribution does Y follow? (c) Find the conditional density of X | Y . What type of distribution is this?
1. Let (X; Y ) be a continuous random vector with joint probability density function fX;Y...
1. Let (X; Y ) be a continuous random vector with joint probability density function fX;Y (x, y) = k(x + y^2) if 0 < x < 1 and 0 < y < 1 0 otherwise. Find the following: I: The expectation of XY , E(XY ). J: The covariance of X and Y , Cov(X; Y ).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT