Find the slope of the equation of the least-squares regression line for the following data set.
x | y |
59 | -119 |
24 | -35 |
50 | -107 |
47 | -73 |
41 | -78 |
72 | -117 |
40 | -55 |
Round your answer to two decimal places.
Solution:
X | Y | XY | X^2 | Y^2 |
59 | -119 | -7021 | 3481 | 14161 |
24 | -35 | -840 | 576 | 1225 |
50 | -107 | -5350 | 2500 | 11449 |
47 | -73 | -3431 | 2209 | 5329 |
41 | -78 | -3198 | 1681 | 6084 |
72 | -117 | -8424 | 5184 | 13689 |
40 | -55 | -2200 | 1600 | 3025 |
n | 7 |
sum(XY) | -30464.00 |
sum(X) | 333.00 |
sum(Y) | -584.00 |
sum(X^2) | 17231.00 |
sum(Y^2) | 54962.00 |
Numerator | -18776.00 |
Denominator | 20613.09 |
r | -0.9109 |
r square | 0.8297 |
Xbar(mean) | 47.5714 |
Ybar(mean) | -83.4286 |
SD(X) | 14.8483 |
SD(Y) | 29.7120 |
b | -1.9301 |
a | 8.3890 |
Slop of regression line is,
b = -1.93
Get Answers For Free
Most questions answered within 1 hours.