Question

Suppose X ~ N(0,1). a.) Derive the expression of cdf F(x) for X^2 b.) Find the...

Suppose X ~ N(0,1).

a.) Derive the expression of cdf F(x) for X^2

b.) Find the numerical value of F(2)

Homework Answers

Answer #1

Let X be a random variable which follows N(0,1). Then the probability density function of X is given by

For N(0,1) the PDF is given by

​​​​​​Let us consider another random variable Y, then the P(Y<y)=F(y) gives the cdf of Y given by .

b) For y=2, the numberical value of F(2) is obtained by

However it is not easy to manually calculate above value one can use r software for the numberical finding of the above value.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X be a random variable with pdf f(x)=12, 0<x<2. a) Find the cdf F(x). b)...
Let X be a random variable with pdf f(x)=12, 0<x<2. a) Find the cdf F(x). b) Find the mean of X. c) Find the variance of X. d) Find F (1.4). e) Find P(12<X<1). f) Find PX>3.
1. Suppose X~N(0,1), what is Pr (0<X<1.20) 2. Suppose X~N(0,1), what is Pr (0<X<1.96) 3. Suppose...
1. Suppose X~N(0,1), what is Pr (0<X<1.20) 2. Suppose X~N(0,1), what is Pr (0<X<1.96) 3. Suppose X~N(0,1), what is Pr (X<1.96) 4. Suppose X~N(0,1), what is Pr (X> 1.20) Please use step by step work. I'm struggling with grasping the process. Thank you.
1. Suppose X~N(0,1), what is Pr (X< -1.96) 2. Suppose X~N(0,1), what is Pr (1.20 <X<1.96)...
1. Suppose X~N(0,1), what is Pr (X< -1.96) 2. Suppose X~N(0,1), what is Pr (1.20 <X<1.96) 3. Suppose X~N(0,1), what is Pr ( -1.96<X< 1.20) Please use step by step work. I'm struggling to grasp the concepts. Thank you.
The CDF of a discrete random variable X is given by F(x) = [x(x+1)(2x+1)]/ [n(n+1)(2n+1)], x...
The CDF of a discrete random variable X is given by F(x) = [x(x+1)(2x+1)]/ [n(n+1)(2n+1)], x =1,2,….n. Derive the probability mass function.        Show that it is a valid probability mass function.
Let X and Y be independent N(0,1) RVs. Suppose U = (X+Y)/squareroot(2) and V = (X-Y)/squareroot(2)....
Let X and Y be independent N(0,1) RVs. Suppose U = (X+Y)/squareroot(2) and V = (X-Y)/squareroot(2). Please derive the joint distribution of (U, V ) by using the Jacobian matrix method.
Let f(x)=4x(^3)-9x(^2)+6x-1 Find: a.) absolute minimum of f(x) on the interval [0,1]. b.) absolute maximum of...
Let f(x)=4x(^3)-9x(^2)+6x-1 Find: a.) absolute minimum of f(x) on the interval [0,1]. b.) absolute maximum of f(x) on the interval [0,1].
Suppose that X is continuous random variable with PDF f(x) and CDF F(x). (a) Prove that...
Suppose that X is continuous random variable with PDF f(x) and CDF F(x). (a) Prove that if f(x) > 0 only on a single (possibly infinite) interval of the real numbers then F(x) is a strictly increasing function of x over that interval. [Hint: Try proof by contradiction]. (b) Under the conditions described in part (a), find and identify the distribution of Y = F(x).
1. Find f''(x) F(x)= (x^2+2)^9 F''(x)= 2. Find t^(4)(n) for the function t(n)= 2n^-1/2+7n^3/2 t^(4)(n) =...
1. Find f''(x) F(x)= (x^2+2)^9 F''(x)= 2. Find t^(4)(n) for the function t(n)= 2n^-1/2+7n^3/2 t^(4)(n) = (Type an expression using n as the variable. Simplify your answer)
F(x,y) =<3x^2+ 3y^2,6xy+ 2.> Find the potential function for F that satisfies the condition f(0,1) =...
F(x,y) =<3x^2+ 3y^2,6xy+ 2.> Find the potential function for F that satisfies the condition f(0,1) = 0.
Z={0,1} F(x)=x G(x)=x^1/2 Find the first order stochastic dominant
Z={0,1} F(x)=x G(x)=x^1/2 Find the first order stochastic dominant