Question

Two cards are drawn from a regular deck of 52 cards, without replacement. What is the...

Two cards are drawn from a regular deck of 52 cards, without replacement. What is the probability that the first card is an ace of clubs and the second is black?
Answer:

A card is drawn from a regular deck of 52 cards and is then put back in the deck. A second card is drawn. What is the probability that:

(a) The first card is red.

(b) The second card is hearts given that the first is red.

(c) The first card is red and the second is hearts.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Probabilities with a deck of cards. There are 52 cards in a standard deck of cards....
Probabilities with a deck of cards. There are 52 cards in a standard deck of cards. There are 4 suits (Clubs, Hearts, Diamonds, and Spades) and there are 13 cards in each suit. Clubs/Spades are black, Hearts/Diamonds are red. There are 12 face cards. Face cards are those with a Jack (J), King (K), or Queen (Q) on them. For this question, we will consider the Ace (A) card to be a number card (i.e., number 1). Then for each...
Two cards are drawn without replacement from a standard deck of 52 playing cards. What is...
Two cards are drawn without replacement from a standard deck of 52 playing cards. What is the probability of choosing a face card for the second card drawn, if the first card, drawn without replacement, was a jack? Express your answer as a fraction or a decimal number rounded to four decimal places.
Two cards are drawn without replacement from a well shuffled deck of cards. Let H1 be...
Two cards are drawn without replacement from a well shuffled deck of cards. Let H1 be the event that a heart is drawn first and H2 be the event that a heart is drawn second. The same tree diagram will be useful for the following four questions. (Note that there are 52 cards in a deck, 13 of which are hearts) (a) Construct and label a tree diagram that depicts this experiment. (b) What is the probability that the first...
Given:  A regular deck of 52 cards.   Cards are drawn without replacement.  R = red card; B = black...
Given:  A regular deck of 52 cards.   Cards are drawn without replacement.  R = red card; B = black card; C = club; D = diamond; H = heart; S = spade; J = Jack; Q = Queen; K = King; A = Ace. 19.  P(S) = 13/52                   20.  P(Q and Q) =                        21.  P(Q and J) =                                                                                                                                                                                         22.  P(H and D) =. 23.  P(Q | Q) =               24.  P(R | R) =                         25.  P(R | B) =                                                                                                                                                                                       26.  P(A | K)= 27.  What is the probability that the card is red if it is known to be...
Suppose two cards are drawn in succession (without replacement) from a standard deck of cards. What...
Suppose two cards are drawn in succession (without replacement) from a standard deck of cards. What is the probability that a face card is drawn first? (Enter your probability as a fraction.) What is the probability that a face card is drawn second, given that a face card was drawn first? (Enter your probability as a fraction.) What is the probability of drawing two cards in succession (without replacement) from a standard deck and having them both be face cards?...
The following question involves a standard deck of 52 playing cards. In such a deck of...
The following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
The following question involves a standard deck of 52 playing cards. In such a deck of...
The following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
A deck of cards has 52 cards with 4 suits (Hearts, Diamonds, Spades, and Clubs) and...
A deck of cards has 52 cards with 4 suits (Hearts, Diamonds, Spades, and Clubs) and 13 cards in each suit (Ace thru 10, Jack, Queen, and King; the last three are considered face cards). A card is drawn at random from a standard 52-card deck.   What is the probability that the card is a number card given the card is black (Spades and Clubs)? Group of answer choices 6/26 1 - 10/26 20/52 10/13
he following question involves a standard deck of 52 playing cards. In such a deck of...
he following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
3) Two cards are drawn from deck, with replacement. (This means that one person chooses a...
3) Two cards are drawn from deck, with replacement. (This means that one person chooses a card,looks at it and returns it, and then another person chooses a card, looks at it, and returns it.) What is the probability that ... (a) ... the first card is an ace and the second card is black? (b) ... both cards are spades? (c) ... neither card has a value from {2, 3, 4, 5}?(d) ... at least one card is an...