let the discrete random variable, x, have the following probability mass function
f(x)= c|x-2|, x=-2,-1,0,1,2,3
a. find the constant such that fx is a valid pmf
b. find P(|X-1|>1)
c. find the expected value of X
d. find the expected value of X^2
X | P(X) | |
-2 | 4c | |
-1 | 3c | |
0 | 0 | |
1 | 1c | |
2 | 0 | |
3 | c | |
total | 9c |
a)
total sum 9c must be 1 to be a valid PDF
so, 9c=1
c=1/9
b)
P(|X-1|>1)
|X-1| | P(X) |
3 | =4/9 |
2 | =3/9 |
1 | =0 |
0 | =1/9 |
1 | 0 |
2 | =1/9 |
so, P(|X-1|>1 = P(|X-1|=2)+P(|X-1|=3) = 3/9+4/9=7/9
c)
X | P(X) | X*P(X) |
-2 | 4/9 | -0.88889 |
-1 | 1/3 | -0.33333 |
0 | 0 | 0 |
1 | 1/9 | 0.111111 |
2 | 0 | 0 |
3 | 1/9 | 0.333333 |
P(X) | X*P(X) | |
total sum = | 1 | -0.77778 |
mean = E[X] = Σx*P(X) = | -0.77778 | ||
d)
X² | P(X) | X²*P(X) |
4 | 4/9 | 1.777778 |
1 | 1/3 | 0.333333 |
0 | 0 | 0 |
1 | 1/9 | 0.1111 |
4 | 0 | 0 |
9 | 1/9 | 1 |
P(X) | X²*P(X) | |
total sum = | 1 | 3.2222 |
E[X²] = Σx²*P(X) = 3.2222
Get Answers For Free
Most questions answered within 1 hours.