Question

Depths of pits on a corroded steel surface are normally distributed with mean 822 μm and...

Depths of pits on a corroded steel surface are normally distributed with mean 822 μm and standard deviation 29 μm.

A) Find the 10th percentile of pit depths

B) A certain pit is 780 μm deep. What percentile is it on?

Homework Answers

Answer #1

TOPIC:Normal distribution and percentiles.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Depths of pits on a corroded steel surface are normally distributed with mean 818 μm and...
Depths of pits on a corroded steel surface are normally distributed with mean 818 μm and standard deviation 29 μm. A)   Find the 10th percentile of pit depths. B)   A certain pit is 780 μm deep. What percentile is it on? (Round up the final answer to the nearest whole number.) C)   What proportion of pits have depths between 800 and 830 μm?
The lifetime of a light bulb in a certain application is normally distributed with mean =...
The lifetime of a light bulb in a certain application is normally distributed with mean = 1000 hours and a standard deviation = 100 hours. A) What is the probability that a lightbulb will last more than 1100 hours? B) Find the 10th percentile of the lifetimes C) What is the probability that the lifetime of a light bulb is between 900 and 1100 hours?
Scores on a certain test are normally distributed with a mean of 77.5 and a standard...
Scores on a certain test are normally distributed with a mean of 77.5 and a standard deviation 9.3. a) What is the probability that an individual student will score more than 90? b) What proportion of the population will have a score between of 70 and 85? c) Find the score that is the 80th percentile of all tests.
1) A company produces steel rods. The lengths of the steel rods are normally distributed with...
1) A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 183.4-cm and a standard deviation of 1.3-cm. Find the probability that the length of a randomly selected steel rod is between 179.9-cm and 180.3-cm. P(179.9<x<180.3)=P(179.9<x<180.3)= 2) A manufacturer knows that their items have a normally distributed length, with a mean of 6.3 inches, and standard deviation of 0.6 inches. If 9 items are chosen at random, what is the probability that...
The height of NBA basketball players are approximately normally distributed with a mean of 78.36 inches...
The height of NBA basketball players are approximately normally distributed with a mean of 78.36 inches and a standard deviation of 4.27 inches a) determine the height of an NBA player at the 60th percentile. b) determine the height of an NBA player at the 10th percentile and c) determine the range of heights that represent the middle 95% of all heights for NBA basketball players.
Electricity bills in a certain city have a mean 87.73. Assume the bills are normally distributed...
Electricity bills in a certain city have a mean 87.73. Assume the bills are normally distributed with standard deviation $12.27. A sample of 61bills was selected for an audit. Find the 48 percentile for the sample mean.
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 98.8 cm and a standard deviation of 2.5 cm. For shipment, 22 steel rods are bundled together. Note: Even though our sample size is less than 30, we can use the z score because 1) The population is normally distributed and 2) We know the population standard deviation, sigma. Find the probability that the average length of a randomly selected bundle of...
The yield strength for A36 grade steel is normally distributed with a mean of 43 and...
The yield strength for A36 grade steel is normally distributed with a mean of 43 and a standard deviation of 4.5. a. What is the probability that the yield strength is at most 40? Greater than 50? b. What yield strength value separates the weakest 35% from the others?
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 153.6 cm and a standard deviation of 2.1 cm. For shipment, 13 steel rods are bundled together. Note: Even though our sample size is less than 30, we can use the z score because 1) The population is normally distributed and 2) We know the population standard deviation, sigma. Find the probability that the average length of a randomly selected bundle of...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 255.9 cm and a standard deviation of 0.9 cm. For shipment, 23 steel rods are bundled together. Note: Even though our sample size is less than 30, we can use the z score because 1) The population is normally distributed and 2) We know the population standard deviation, sigma. Find the probability that the average length of a randomly selected bundle of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT