4. X has a normal distribution with mean=100 and a variance=25. Evaluate the following.
(e) Pr( 101.7 < X < 112.3)
(f) Pr( 93.85 < X < 106.15)
(g) Pr( 90.15 < X < 94.65)
(h) The corresponding X0 value, given that Pr(X < X0)= 0.9115.
Mean = 100
S.D= =5
(e) Pr( 101.7 < X < 112.3)
Z score at 101.7
Z = (X - μ) / σ
Z = (101.7 - 100) / 5
Z = 0.34
Z score at 112.3
Z = (X - μ) / σ
Z = (112.3 - 100) / 5
Z = 2.46
Pr( 101.7 < X < 112.3) = P( 2.46 < Z ) - P(o.34< Z )
= 0.36
(f) Pr( 93.85 < X < 106.15)
at x=93.85
Z = (X - μ) / σ
Z = (93.85 - 100) / 5
Z = -1.23
at x=106.15
Z = (X - μ) / σ
Z = (106.15 - 100) / 5
Z = 1.23
P( -1.23 < Z < 1.23) = 0.7813
(g) Pr( 90.15 < X < 94.65)
at x= 90.15
Z = (X - μ) / σ
Z = (90.15 - 100) / 5
Z = -1.97
at x=94.65
Z = (X - μ) / σ
Z = (94.65 - 100) / 5
Z = -1.07
P( -1.97 < Z < -1.07) = 0.1179
h)
P( X < X0) = 0.9115
Z score at p value of 0.9115
Z = 1.35005
Z = (X - μ) / σ
1.35005 = (X0 - 100) / 5
X0= 100+6.75
X0= 106.75
Get Answers For Free
Most questions answered within 1 hours.