Question

Two random samples were independently generated from two populations, as follows below. The two populations share...

Two random samples were independently generated from two populations, as follows below. The two populations share the same variance of σ². X can be considered the control group and Y the treatment group.

and   

A. Find the likelihood function, i.e., the joint density function of X and Y.

B. Derive the maximum likelihood estimates of μ1, μ2, and σ².

C. Suppose the null hypothesis is μ1=μ2 and alternative hypothesis is μ1 μ2. Write the formula for calculating the likelihood of the null hypothesis and the formula for calculating the likelihood of the alternative hypothesis.

D. How do you interpret the likelihood scores of the null and alternative hypotheses?

E. How do you perform the likelihood ratio test for the null and alternative hypotheses specified in (C)?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In order to compare the means of two populations, independent random samples of 282 observations are...
In order to compare the means of two populations, independent random samples of 282 observations are selected from each population, with the following results: Sample 1 Sample 2 x¯1=3 x¯2=4 s1=110 s2=200 (a)    Use a 97 % confidence interval to estimate the difference between the population means (?1−?2)(μ1−μ2). _____ ≤(μ1−μ2)≤ ______ (b)    Test the null hypothesis: H0:(μ1−μ2)=0 versus the alternative hypothesis: Ha:(μ1−μ2)≠0. Using ?=0.03, give the following: (i)    the test statistic z= (ii)    the positive critical z score     (iii)    the negative critical z score     The...
Two random samples were selected independently from populations having normal distributions. The statistics given below were...
Two random samples were selected independently from populations having normal distributions. The statistics given below were extracted from the samples. Complete parts a through c. x overbar 1 =40.1 x overbar 2=30.5 If σ1=σ2​, s1=33​, and s2=22​, and the sample sizes are n 1=10 and n 2n2equals=1010​, construct a 99​% confidence interval for the difference between the two population means. The confidence interval is ≤μ1−μ2≤
In a consumer research study, several Meijer and Walmart stores were surveyed at random and the...
In a consumer research study, several Meijer and Walmart stores were surveyed at random and the average basket price was recorded for each. You wish to determine if the average basket price for Meijer is different from the average basket price for Walmart. It was found that the average basket price for 18 randomly chosen Meijer stores (group 1) was $49.451 with a standard deviation of $12.3146. Similarly, a random sample of 25 Walmart stores (group 2) had an average...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=39,n2=40,x¯1=50.3,x¯2=73.8,s1=6s2=6.1 Find a 98% confidence interval for the difference μ1−μ2 of the population means, assuming equal population variances.
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=41, n2=44, x¯1=52.3, x¯2=77.3, s1=6 s2=10.8 Find a 96.5% confidence interval for the difference μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 28.5 x−2x−2 = 29.8 σ12 = 96.9 σ22 = 87.0 n1 = 29 n2 = 25 a. Construct the 99% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 29.8 x−2x−2 = 32.4 σ12 = 95.3 σ22 = 91.6 n1 = 34 n2 = 29 a. Construct the 99% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 34.4 x−2x−2 = 26.4 σ12 = 89.5 σ22 = 95.8 n1 = 21 n2 = 23 a. Construct the 90% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following summary statistics, calculated from two independent random samples taken from normally distributed populations....
Consider the following summary statistics, calculated from two independent random samples taken from normally distributed populations. Sample 1 x¯1=20.87 s21=2.01 n1=16 Sample 2 x¯2=24.00 s22=3.36 n2=15 Test the null hypothesis H0:μ1=μ2against the alternative hypothesis HA:μ1<μ2. a) Calculate the test statistic for the Welch Approximate t procedure. Round your response to at least 3 decimal places. b) The Welch-Satterthwaite approximation to the degrees of freedom is given by df = 26.366427. Using this information, determine the range in which the p-value...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=51,n2=36,x¯1=56.5,x¯2=75.3,s1=5.3s2=10.7n1=51,x¯1=56.5,s1=5.3n2=36,x¯2=75.3,s2=10.7 Find a 97.5% confidence interval for the difference μ1−μ2μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT