Question

If your population standard deviation is 66.04, then how many people do you need to sample...

If your population standard deviation is 66.04, then how many people do you need to sample at a minimum to ensure with 95% confidence that you have a maximal margin of error of 1.32?

Round your answer to the nearest whole number

Homework Answers

Answer #1

Solution:

Given ,

= 66.04 ..Population SD

E = 1.32 Margin of error

c = 95% =0.95 ...confidence level

= 1- c = 1- 0.95 = 0.05

  /2 = 0.05 2 = 0.025 and 1- /2 = 0.975

Search the probability 0.975 in the Z table and see corresponding z value

=  1.96

Now, sample size (n) is given by,

= {(1.96* 66.04)/ 1.32 }2

=  9615.64473976

= 9616 ..(round to the next whole number)

Answer : 9616  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a population having a standard deviation equal to 9.94. We wish to estimate the mean...
Consider a population having a standard deviation equal to 9.94. We wish to estimate the mean of this population. (a) How large a random sample is needed to construct a 95% confidence interval for the mean of this population with a margin of error equal to 1? (Round your answer to the next whole number.) The random sample is             units. (b) Suppose that we now take a random sample of the size we have determined in part a. If we...
1)Given a sample mean is82, the sample size is 100and the population standard deviation is 20....
1)Given a sample mean is82, the sample size is 100and the population standard deviation is 20. Calculate the margin of error to 2 decimalsfor a 90% confidence level. 2)Given a sample mean is 82, the sample size is 100 and the population standard deviation is 20. Calculate the confidence interval for 90% confidence level. What is the lower limit value to 2 decimals? 3)Given a sample mean is 82, the sample size is 100 and the population standard deviation is...
The population standard deviation for the height of college football players is 3.3 inches. If we...
The population standard deviation for the height of college football players is 3.3 inches. If we want to estimate a 90% confidence interval for the population mean height of these players with a 0.7 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number) Answer:
The population standard deviation for the height of college hockey players is 3.4 inches. If we...
The population standard deviation for the height of college hockey players is 3.4 inches. If we want to estimate 90% confidence interval for the population mean height of these players with a 0.6 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number) Answer:
The population standard deviation for the height of college basketball players is 2.9 inches. If we...
The population standard deviation for the height of college basketball players is 2.9 inches. If we want to estimate 92% confidence interval for the population mean height of these players with a 0.6 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number)
The population standard deviation for the height of college basketball players is 3.1 inches. If we...
The population standard deviation for the height of college basketball players is 3.1 inches. If we want to estimate 99% confidence interval for the population mean height of these players with a 0.58 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number)
The population standard deviation for the height of college basketball players is 3 inches. If we...
The population standard deviation for the height of college basketball players is 3 inches. If we want to estimate 99% confidence interval for the population mean height of these players with a 0.7 margin of error, how many randomly selected players must be surveyed?  (Round up your answer to nearest whole number)
The population standard deviation for the height of college baseball players is 3.2 inches. If we...
The population standard deviation for the height of college baseball players is 3.2 inches. If we want to estimate 90% confidence interval for the population mean height of these players with a 0.7 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number)
Suppose you have a sample of size 33 with a mean of 39 and a population...
Suppose you have a sample of size 33 with a mean of 39 and a population standard deviation of 14.5. What is the maximal margin of error associated with a 95% confidence interval for the true population mean? In your calculations, use z = 2. Give your answer as a decimal, to two places m = ounces
To estimate with 95% confidence the mean of a normal population whose standard deviation is assumed...
To estimate with 95% confidence the mean of a normal population whose standard deviation is assumed to be 4 and the maximum allowable sampling error is assumed to be 1, what must the random sample size be? Make sure to round your answers up to the nearest whole number.