Question

Conditional Probability Problem: An urn contains 5 red balls, 4 green balls, and 4 yellow balls...

Conditional Probability Problem: An urn contains 5 red balls, 4 green balls, and 4 yellow balls for a total of 13 balls. If 5 balls are randomly selected without replacement, what is the probability of selecting at least two red balls given that at least one yellow ball is selected? Please show all steps.

Homework Answers

Answer #1

P(at least one yellow ball )=1-P(no yellow ball) 1-P(select 5 balls from remaining 9 balls)=1-9C5/13C5 =1-126/1287=1161/1287

P(at least one yellow and at least 2 red balls)=P(1 yellow , 2 red , 2 green)+P(2 yellow , 2 red and 1 green)+P(3 yellow,2 red)+P(1 yellow , 3 red , 1 green)+P(1 yellow , 4 red)+P(2 yellow , 3 red)

=(5C1*4C2*4C2 +5C1*4C2*4C2 +5C1*4C2*4C2 +5C1*4C2*4C2 +5C1*4C2*4C2 )/13C5 =605/1287

hence P( selecting at least two red balls given that at least one yellow ball is selected )=(605/1287)/(1161/1287)

=605/1161

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Box 1 contains 4 red balls, 5 green balls and 1 yellow ball. Box 2 contains...
Box 1 contains 4 red balls, 5 green balls and 1 yellow ball. Box 2 contains 3 red balls, 5 green balls and 2 yellow balls. Box 3 contains 2 red balls, 5 green balls and 3 yellow balls. Box 4 contains 1 red ball, 5 green balls and 4 yellow balls. Which of the following variables have a binomial distribution? (I) Randomly select three balls from Box 1 with replacement. X = number of red balls selected (II) Randomly...
An urn contains 4 red balls and 6 green balls. Three balls are chosen randomly from...
An urn contains 4 red balls and 6 green balls. Three balls are chosen randomly from the urn, without replacement. (a) What is the probability that all three balls are red? (Round your answer to four decimal places.) (b) Suppose that you win $50 for each red ball drawn and you lose $25 for each green ball drawn. Compute the expected value of your winnings.
Urn A has 8 Red balls and 5 Green balls while Urn B has 1 Red...
Urn A has 8 Red balls and 5 Green balls while Urn B has 1 Red ball and 3 Green balls. A fair die is tossed. If a “5” or a “6” are rolled, a ball is drawn from Urn A. Otherwise, a ball is drawn from Urn B. (a) Determine the conditional probability that the chosen ball is Red given that Urn A is selected? (b) Determine the conditional probability that the chosen ball is Red and Urn B...
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and...
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and 6 red balls. One ball is drawn from Urn A and transferred to Urn B. Then one ball is drawn from Urn B and transferred to Urn A. Let X = the number of green balls in Urn A after this process. List the possible values for X and then find the entire probability distribution for X.
An urn contains 6 green ball, 7 blue balls and 5 yellow balls. You are asked...
An urn contains 6 green ball, 7 blue balls and 5 yellow balls. You are asked to draw 3 balls, one at a time (without replacement). Find the probability that a green is pulled first, then another green ball then a blue ball.
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen...
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen without replacement. Define the following events: A:{ One of the balls is yellow } B:{ At least one ball is red } C:{ Both balls are green } D:{ Both balls are of the same color } Find the following conditional probabilities: P(B\Ac)= P(D\B)=
An urn contains one green ball,one yellow ball,one red ball,one white ball. I draw 4 balls...
An urn contains one green ball,one yellow ball,one red ball,one white ball. I draw 4 balls with replacement. What is the probobility that at least one color is repeated exactly twice. (Plase show the logic behind this, thanks!)
An urn contains 10 red balls, 7 green balls, and 3 yellow balls. Draw 5 balls....
An urn contains 10 red balls, 7 green balls, and 3 yellow balls. Draw 5 balls. What's the probability that you draw 2 red, 2 green, and 1 yellow? (Same experiment as above) What's the probability that you draw 2 red, 1 green, and 2 yellow?
An urn contains 25 red, 21 green, and 11 yellow balls. Draw two balls without replacement....
An urn contains 25 red, 21 green, and 11 yellow balls. Draw two balls without replacement. What is the the probability that both balls in the sample are red?probability = What is the probability that the number of red balls in the sample is exactly 1 or the number of yellow balls in the sample is exactly 1 (or both)?probability = Draw two balls with replacement. What is the probability that the number of red balls in the sample is...
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen...
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen without replacement. Define the following events: A: \{ One of the balls is yellow \} B: \{ At least one ball is red \} C: \{ Both balls are green \} D: \{ Both balls are of the same color \} Find the following conditional probabilities: (a) P(B|D^c) (b) P(D|C) (c) P(A|B)