Question

A multiple regression analysis between yearly income (y in $1000s), college grade point average (x1), age...

A multiple regression analysis between yearly income (y in $1000s), college grade point average (x1), age of the individuals (x2), and gender of the individual (x3; 0 representing female and 1 representing male) was performed on a sample of 10 people, and the following results were obtained using Excel:

ANOVA

df

SS

MS

F

Regression

360.59

Residual

23.91

Coefficients

Standard Error

Intercept

4.0928

1.4400

x1

10.0230

1.6512

x2

0.1020

0.1225

x3

-4.4811

1.4400

We want to test whether or not there is a significant relationship between the yearly income and the independent variables. Calculate the test statistics F

Homework Answers

Answer #1

Thank You ?

Please thumbs up!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following estimated regression model was developed relating yearly income (y in $1000s) of 30 individuals...
The following estimated regression model was developed relating yearly income (y in $1000s) of 30 individuals with their age (x1) and their gender (x2) (0 if male and 1 if female). ŷ = 30 + 0.7x1 + 3x2 Also provided are SST = 1200 and SSE = 384. The estimated income of a 30-year-old male is _____. a. $51 b. $510 c. $5100 d. $51,000
The accompanying table shows the regression results when estimating y = β0 + β1x1 + β2x2...
The accompanying table shows the regression results when estimating y = β0 + β1x1 + β2x2 + β3x3 + ε. df SS MS F Significance F Regression 3 453 151 5.03 0.0030 Residual 85 2,521 30 Total 88 2,974 Coefficients Standard Error t-stat p-value Intercept 14.96 3.08 4.80 0.0000 x1 0.87 0.29 3.00 0.0035 x2 0.46 0.22 2.09 0.0400 x3 0.04 0.34 0.12 0.9066 At the 5% significance level, which of the following explanatory variable(s) is(are) individually significant? Multiple Choice:...
Using data from 50 workers, a labour economist runs a multiple regression of Y (hourly wage...
Using data from 50 workers, a labour economist runs a multiple regression of Y (hourly wage in $) on X1 (years of education), X2 (gender) and X3 (an interaction between X1 and X2), and obtains the following regression results. Coefficients Standard error Intercept -16.78 2.14 Years of education 2.77 0.16 Gender (coded 1 for female and 0 for male) 8.84 3.01 Interaction between years of education and gender -1.02 0.22 Based on the above information, the estimated effect of X1...
The accompanying table shows the regression results when estimating y = β0 + β1x1 + β2x2...
The accompanying table shows the regression results when estimating y = β0 + β1x1 + β2x2 + β3x3 + ε. df SS MS F Significance F Regression 3 453 151 5.03 0.0030 Residual 85 2,521 30 Total 88 2,974 Coefficients Standard Error t-stat p-value Intercept 14.96 3.08 4.86 0.0000 x1 0.87 0.29 3.00 0.0035 x2 0.46 0.22 2.09 0.0400 x3 0.04 0.34 0.12 0.9066 At the 5% significance level, which of the following explanatory variable(s) is(are) individually significant? Multiple Choice...
] A partial computer output from a regression analysis using Excel’s Regression tool follows. Regression Statistics...
] A partial computer output from a regression analysis using Excel’s Regression tool follows. Regression Statistics Multiple R (1) R Square 0.923 Adjusted R Square (2) Standard Error 3.35 Observations ANOVA df SS MS F Significance F Regression (3) 1612 (7) (9) Residual 12 (5) (8) Total (4) (6) Coefficients Standard Error t Stat P-value Intercept 8.103 2.667 x1 7.602 2.105 (10) x2 3.111 0.613 (11)
6. The following estimated regression model was developed relating yearly income (Y in $1,000s) of 30...
6. The following estimated regression model was developed relating yearly income (Y in $1,000s) of 30 individuals with their age (X1) and their gender (X2) (0 if male and 1 if female). ˆ Y =20+0.7X1 +2X2 SST = 1,000 and SSE = 256 b) Is there a significant relationship between the yearly income and the set of predictors (i.e., age and gender)? Use α=0.05 and make sure to show all your steps.
1. For the following multiple regression which was conducted to attempt to predict the variable based...
1. For the following multiple regression which was conducted to attempt to predict the variable based on the independent variables shown, answer the following questions. Regression Statistics Multiple R 0.890579188 R Square 0.793131289 Adjusted R Square 0.7379663 Standard Error 30.28395534 Observations 20 ANOVA df SS MS F Regression 4 52743.23074 13185.81 14.37743932 Residual 15 13756.76926 917.1179509 Total 19 66500 Coefficients Standard Error t Stat P-value Intercept 73.33291 62.25276 1.17799 0.25715 X1 -0.13882 0.05353 -2.59326 0.02037 X2 3.73984 0.95568 3.91328 0.00138...
Refer to the following regression output: Predictor Coef SE Coef Constant    30.00 13.70 X1    -7.00 3.60...
Refer to the following regression output: Predictor Coef SE Coef Constant    30.00 13.70 X1    -7.00 3.60 X2 3.00 9.30 X3 -19.00 10.80 Source DF SS MS F   Regression 3.00 8,200.00   Error 25.00     Total 28.00 10,000.00 a. What is the regression equation? (Round the final answers to the nearest whole number. Negative answer should be indicated by a minus sign.) Y′ =  +   X1 +  X2 +  X3 b. If X1 = 4, X2 = 6, and X3 = 8, what is the value of...
Using the attached regression output, answer the following: SUMMARY OUTPUT Regression Statistics Multiple R 0.972971 R...
Using the attached regression output, answer the following: SUMMARY OUTPUT Regression Statistics Multiple R 0.972971 R Square 0.946673 Adjusted R Square 0.944355 Standard Error 76.07265 Observations 49 ANOVA df SS MS F Significance F Regression 2 4725757 2362878 408.3046 5.24E-30 Residual 46 266204.2 5787.049 Total 48 4991961 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -0.46627 14.97924 -0.03113 0.975302 -30.6179 29.68537 X1 0.09548 0.084947 1.123997 0.266846 -0.07551 0.26647 X2 0.896042 0.205319 4.364141 7.16E-05 0.482756 1.309328 a. What...
df SS MS F Regression A 8,693.11 4,346.56 375.16 Residual 22 254.89 C Total 24 B...
df SS MS F Regression A 8,693.11 4,346.56 375.16 Residual 22 254.89 C Total 24 B Coefficients Standard Error t-stat p-value Intercept 257.74 22.82 11.29 1.27E-10 x1 -2.97 0.47 -6.31 2.37E-06 x1 0.23 0.24 0.96 0.3454 a. What is the sample regression equation? b. Interpret the slope coefficient for x1. c. Find the predicted value for y if x1 equals 25 and x2 equals 50. d. Fill in the missing values in the ANOVA table. e. Calculate the standard error...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT