Question

Consider a normal population with an unknown population standard deviation. A random sample results in 11formula80.mmlx...

Consider a normal population with an unknown population standard deviation. A random sample results in 11formula80.mmlx − x− = 59.85 and s2 = 14.44. a. Compute the 95% confidence interval for μ if x bar and s2 were obtained from a sample of 5 observations. b. Compute the 95% confidence interval for μ if x bar and s2 were obtained from a sample of 12 observations

Homework Answers

Answer #1

The standard deviation is

(a)

(b)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a normal population with an unknown population standard deviation. A random sample results in x−x−...
Consider a normal population with an unknown population standard deviation. A random sample results in x−x− = 49.64 and s2 = 38.44. a. Compute the 95% confidence interval for μ if x−x− and s2 were obtained from a sample of 22 observations. (Round intermediate calculations to at least 4 decimal places. Round "t" value to 3 decimal places and final answers to 2 decimal places.) b. Compute the 95% confidence interval for μ if x−x− and s2 were obtained from...
Consider a normal population with an unknown population standard deviation. A random sample results in x−...
Consider a normal population with an unknown population standard deviation. A random sample results in x− = 50.36 and s2 = 31.36. [You may find it useful to reference the t table.] a. Compute the 99% confidence interval for μ if x− and s2 were obtained from a sample of 16 observations. (Round intermediate calculations to at least 4 decimal places. Round "t" value to 3 decimal places and final answers to 2 decimal places.) b. Compute the 99% confidence...
Consider a normal population with an unknown population standard deviation. A random sample results in x−x−...
Consider a normal population with an unknown population standard deviation. A random sample results in x−x− = 62.88 and s2 = 16.81. [You may find it useful to reference the t table.] a. Compute the 90% confidence interval for μ if x−x− and s2 were obtained from a sample of 24 observations. (Round intermediate calculations to at least 4 decimal places. Round "t" value to 3 decimal places and final answers to 2 decimal places.) b. Compute the 90% confidence...
A random sample of 12 items is drawn from a population whose standard deviation is unknown....
A random sample of 12 items is drawn from a population whose standard deviation is unknown. The sample mean is x¯ = 800 and the sample standard deviation is s = 10. Use Appendix D to find the values of Student’s t. (a) Construct an interval estimate of μ with 95% confidence. (Round your answers to 3 decimal places.) The 95% confidence interval is from 793.650 793.650 Correct ✓ to 806.351 806.351 Correct ✓ (b) Construct an interval estimate of...
A random sample of 23 items is drawn from a population whose standard deviation is unknown....
A random sample of 23 items is drawn from a population whose standard deviation is unknown. The sample mean is x¯x¯ = 770 and the sample standard deviation is s = 25. Use Appendix D to find the values of Student’s t. (a) Construct an interval estimate of μ with 95% confidence. (Round your answers to 3 decimal places.)    The 95% confidence interval is from  to (b) Construct an interval estimate of μ with 95% confidence, assuming that s =...
X is a normal random variable with unknown mean μ and standard deviation σ = 5....
X is a normal random variable with unknown mean μ and standard deviation σ = 5. (a) Find the margin of error E in a 95 percent confidence interval for μ corresponding a random sample of size   (b) What size sample would be needed to have a margin of error equal to 1.5?
A random sample of size n=55 is obtained from a population with a standard deviation of...
A random sample of size n=55 is obtained from a population with a standard deviation of σ=17.2, and the sample mean is computed to be x=78.5. Compute the 95% confidence interval. Compute the 90% confidence interval. SHOW WORK
A random sample of 24 items is drawn from a population whose standard deviation is unknown....
A random sample of 24 items is drawn from a population whose standard deviation is unknown. The sample mean is x¯ = 870 and the sample standard deviation is s = 25. Use Appendix D to find the values of Student’s t. (a) Construct an interval estimate of μ with 98% confidence. (Round your answers to 3 decimal places.) The 98% confidence interval is from to (b) Construct an interval estimate of μ with 98% confidence, assuming that s =...
Suppose we take a random sample X1,…,X6 from a normal population with an unknown variance σ2...
Suppose we take a random sample X1,…,X6 from a normal population with an unknown variance σ2 and unknown mean μ. Construct a two-sided 99% confidence interval for μ if the observations are given by 2.59,0.89,2.69,0.04,−0.26,1.31
A random variable ?x has a Normal distribution with an unknown mean and a standard deviation...
A random variable ?x has a Normal distribution with an unknown mean and a standard deviation of 12. Suppose that we take a random sample of size ?=36n=36 and find a sample mean of ?¯=98x¯=98 . What is a 95% confidence interval for the mean of ?x ? (96.355,99.645)(96.355,99.645) (97.347,98.653)(97.347,98.653) (94.08,101.92)(94.08,101.92) (74.48,121.52)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT