Question

The central limit theorem states that: Populations with more than 30 observations are approximately normally distributed....

The central limit theorem states that:

Populations with more than 30 observations are approximately normally distributed.

As the sample size increase, a sampling distribution will look more and more like the population.

As long as the sample size collected is at least 30, the variable of interest will always be approximately normally distributed.

A skewed-left population can never be a sampling distribution that is approximately normally distributed.

For sufficiently large random samples, the sampling distribution of the sample mean is approximately normal regardless of the shape of the population.

Which one?

Homework Answers

Answer #1

Solution:

      The central limit is about sampling distribution of sample mean when sample size is sufficiently large, since option 1 , 2 , and 3 do not describe about sampling distribution. Thus option 1 , 2, 3 and 4 are incorrect. Also option 4 does not say about sample size. So option 4 is also incorrect.

Thus correct option is: 5th option

Thus central limit states that:

For sufficiently large random samples, the sampling distribution of the sample mean is approximately normal regardless of the shape of the population.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Central Limit Theorem implies that [Select the correct answers - There may be more than...
The Central Limit Theorem implies that [Select the correct answers - There may be more than one correct answer. Negative marking will apply for incorrect selections.] (a) All variables have bell-shaped sample data distributions if a random sample con- tains at least about 30 observations. (b) Population distributions are normal whenever the population size is large. (c) For large random samples, the sampling distribution of y ̄ is approximately normal, regardless of the shape of the population distribution. (d) The...
The central limit theorem (CLT) predicts that sampling from a normally distributed population results in a...
The central limit theorem (CLT) predicts that sampling from a normally distributed population results in a normally distributed SDM. What would the shape of the SDM be if the population is Skewed? Why?
Which one of the following statements is true? A. The Central Limit Theorem states that the...
Which one of the following statements is true? A. The Central Limit Theorem states that the sampling distribution of the sample mean, y , is approximately Normal for large n only if the distribution of the population is normal. B. The Central Limit Theorem states that the sampling distribution of the sample mean, y , is approximately Normal for small n only if the distribution of the population is normal. C. The Central Limit Theorem states that the sampling distribution...
Which of the following statements is not consistent with the Central Limit Theorem? 1. The Central...
Which of the following statements is not consistent with the Central Limit Theorem? 1. The Central Limit Theorem applies to non-normal population distributions. 2. The standard deviation of the sampling distribution will be equal to the population standard deviation. 3. The sampling distribution will be approximately normal when the sample size is sufficiently large. 4. The mean of the sampling distribution will be equal to the population mean.
a) What is the Central Limit Theorem? It is always true that as the sample size,...
a) What is the Central Limit Theorem? It is always true that as the sample size, n, increases, the distribution of the sample means will be approximately normally distributed. Explain b) If the underlying population of study is not normally distributed, how large should the sample size be? What if the population is normally distributed ?
The central limit theorem (CLT) is a statistical theory that states that given a sufficiently large...
The central limit theorem (CLT) is a statistical theory that states that given a sufficiently large sample size from a population with a finite level of variance, the mean of all samples from the same population will be approximately equal to the mean of the population. (true or false?)
Which of the following is an appropriate statement of the central limit theorem? Select just one....
Which of the following is an appropriate statement of the central limit theorem? Select just one. (1) The central limit theorem states that if you take a large random sample from a population and the data in the population are normally distributed, the data in your sample will be normally distributed.    (2) The central limit theorem states that if you take a large random sample from a population, the data in your sample will be normally distributed. (3) The...
The Central Limit Theorem allows us to make predictions about where a sample mean will fall...
The Central Limit Theorem allows us to make predictions about where a sample mean will fall in a distribution of sample means. One way it does this is by explaining (using a formula) how the shape of the distribution will change depending on the sample size. What part of the Central Limit Theorem tells us about the shape of the distribution? The part that explains that there is no standardized table you can use to find probabilities once you use...
Question Central Limit Theorem a)According to the Central Limit Theorem, what are the mean and standard...
Question Central Limit Theorem a)According to the Central Limit Theorem, what are the mean and standard deviation of the sampling distribution of sample means? b)A population has a mean ?=1800 and a standard deviation ?=40. Find the mean and standard deviation of the sampling distribution of sample means when the sample size n=100.
f repeated samples of yogurt sales were taken, according to the Central Limit Theorem, the mean...
f repeated samples of yogurt sales were taken, according to the Central Limit Theorem, the mean of those repeated samples would tend to be normally distributed if the sample size is large enough. Because the sample population is ________, it is safe to apply the Central Limit Theorem, even if the sample size for each sample is 15. a.) positively distributed b.) uniformly distributed c.) negatively distributed d.) normally distributed
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT