Question

Suppose the population average score among high school seniors from the state of Illinois on a...

Suppose the population average score among high school seniors from the state of Illinois on a statistics proficiency test is 73%, with a population standard deviation of 10%. If we randomly sample 25 high school seniors, what is the probability that the sample average is between 71% and 75%? 2 a. 0.8413 b. 0.1587 c. 1 d. 0.6827 e. 0.3173

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A researcher would like to determine the average score on achievement tests among high school seniors...
A researcher would like to determine the average score on achievement tests among high school seniors attending Boulder High. A sample of n=100 students is selected and each student takes the test. The average score of the sample is 44 with an estimated standard deviation of 12 (this was estimated from the sample). Test the null hypothesis that the population mean of Boulder High students is actually 40. Note that the t-critical value for this degree of freedom is +/-...
The state test scores for 12 randomly selected high school seniors are shown on the right....
The state test scores for 12 randomly selected high school seniors are shown on the right. Complete parts​ (a) through​ (c) below. Assume the The state test scores for 1212 randomly selected high school seniors are shown on the right. Complete parts​ (a) through​ (c) below. Assume the population is normally distributed. 1430 1228 988 695 724724 830 722 750750 546 627 1447 943 the state test scores for 12 randomly selected high school seniors are shown on the right....
6.18 ACT scores of high school seniors. The scores of your state’s high school seniors on...
6.18 ACT scores of high school seniors. The scores of your state’s high school seniors on the ACT college entrance examination in a recent year had mean m 5 22.3 and standard deviation s 5 6.2. The distribution of scores is only roughly Normal. (a) What is the approximate probability that a single student randomly chosen from all those taking the test scores 27 or higher?(b) Now consider an SRS of 16 students who took the test. What are the...
A random sample of high school seniors took a literacy test before graduation. A comparison of...
A random sample of high school seniors took a literacy test before graduation. A comparison of scores for the test showed that women scored significantly higher on average (p-value = 0.017) than men on the literacy test. What does the p-value in this statement tell us? If there were actually no difference in the mean literacy scores for all men and women at the high school, the probability of observing a difference between the two group means as large or...
The mean quantitative score on a standardized test for female​ college-bound high school seniors was 550...
The mean quantitative score on a standardized test for female​ college-bound high school seniors was 550 The scores are approximately Normally distributed with a population standard deviation of 50 A scholarship committee wants to give awards to​ college-bound women who score at the 96TH percentile or above on the test. What score does an applicant​ need? Complete parts​ (a) through​ (g) below.The mean quantitative score on a standardized test for female​ college-bound high school seniors was 550 The scores are...
A random sample of 12 high school seniors took a standardized mathematics test and made scores:...
A random sample of 12 high school seniors took a standardized mathematics test and made scores: 78, 78, 65, 77, 65, 81, 83, 59, 76, 75, 83, 59 Past scores at the same high school have been Normally distributed with LaTeX: \sigma σ =9.3 Is this sample evidence at the α =0.01 level that the average test score for all students is less than 75? State the hypotheses and calculate a test statistic and P-value in order to answer the...
QUESTION 1: An SRS of 450 high school seniors gained an average of x¯¯¯x¯ = 21...
QUESTION 1: An SRS of 450 high school seniors gained an average of x¯¯¯x¯ = 21 points in their second attempt at the SAT Mathematics exam. Assume that the change in score has a Normal distribution with standard deviation 53. Find a 90% confidence interval for μμ based on this sample. Confidence interval (±±0.01) is between  and What is the margin of error (±±0.01) for 90%? Suppose we had an SRS of just 100 high school seniors. What would be the...
Scholastic Aptitude Test (SAT) mathematics scores of a random sample of 500 high school seniors in...
Scholastic Aptitude Test (SAT) mathematics scores of a random sample of 500 high school seniors in the state of Texas are collected, and the sample mean and standard deviation are found to be 501 and 112, respectively. Find a 99% confidence interval on the mean SAT mathematics score for seniors in the state of Texas.
The state test scores for 12 randomly selected high school seniors are shown below. Assume the...
The state test scores for 12 randomly selected high school seniors are shown below. Assume the population is normally distributed. Find (a) the sample mean. (b) Find the sample standard deviation (c) Construct a 99% confidence interval for the population mean u 1424 1220 980 691 721 837 723 745 547 620 1450 940 (a) Find the sample mean. x = _______ ​(Round to one decimal place as​ needed.) (b) Find the sample standard deviation. ​(c) Construct a 99​% confidence...
A sample of 25 seniors from a large metropolitan area school district had a mean Math...
A sample of 25 seniors from a large metropolitan area school district had a mean Math SAT score of 450. Suppose we know that the standard deviation of the population of Math SAT scores for seniors in the district is 100. A 90% confidence interval for the population mean SAT score for the population of seniors is used. Which of the following would produce a confidence interval with a smaller margin of error?                                                                                  (2) Using a sample of...