Question

Consider two sample means distributions corresponding to the same x distribution. The first sample mean distribution...

Consider two sample means distributions corresponding to the same x distribution. The first sample mean distribution is based on samples of size n=100 and the second is based on sample of size n=225.Which sample mean distribution has the smaller standard error? Please THOROUGHLY Explain and no pictures as it is hard for me to read some handwriting :) Thanks!

Homework Answers

Answer #1

The formula for standard error is given by:

We have the same distribution for x. This means that the population standard deviation is going to be the same i.e. is going to be the same.

The first sample mean distribution has n=100

The second sample mean distribution has n=225

Clearly

Hence the second sample mean distribution has the smaller standard error.

Let me know in the comments if anything is not clear. I will reply ASAP! Please do upvote if satisfied!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider two sample means distributions corresponding to the same x distribution. The first sample mean distribution...
Consider two sample means distributions corresponding to the same x distribution. The first sample mean distribution is based on samples of size n=100 and the second is based on sample of size n=225. Illustrate the effect of standard error on each set, and show how the difference in sample size would either increase to decrease the numeric value for each grouping. Illustrate your examples for each answer.
Suppose an x distribution has mean μ = 4. Consider two corresponding x distributions, the first...
Suppose an x distribution has mean μ = 4. Consider two corresponding x distributions, the first based on samples of size n = 49 and the second based on samples of size n = 81. (a) What is the value of the mean of each of the two x distributions? For n = 49, μ x = For n = 81, μ x =
Suppose an x distribution has mean μ = 4. Consider two corresponding x distributions, the first...
Suppose an x distribution has mean μ = 4. Consider two corresponding x distributions, the first based on samples of size n = 49 and the second based on samples of size n = 81. (a) What is the value of the mean of each of the two x distributions? For n = 49, μ x = For n = 81, μ x = (b) For which x distribution is P( x > 5) smaller? Explain your answer. The distribution...
Suppose an x distribution has mean μ = 4. Consider two corresponding x distributions, the first...
Suppose an x distribution has mean μ = 4. Consider two corresponding x distributions, the first based on samples of size n = 49 and the second based on samples of size n = 81. (a) What is the value of the mean of each of the two x distributions? For n = 49, μ x = For n = 81, μ x = (b) For which x distribution is P( x > 5) smaller? Explain your answer. The distribution...
Suppose an x distribution has mean μ = 2. Consider two corresponding  x distributions, the first based...
Suppose an x distribution has mean μ = 2. Consider two corresponding  x distributions, the first based on samples of size n = 49 and the second based on samples of size n = 81. (a) What is the value of the mean of each of the two x distributions? For n = 49, μx= For n = 81, μx= Suppose x has a distribution with μ = 54 and σ = 5. Find P(50 ≤ x ≤ 55). (Round your...
The distribution of sample means calculated using samples of size 16 has a mean of 100...
The distribution of sample means calculated using samples of size 16 has a mean of 100 and a standard error of 2.25. What is the variance of the original distribution?
In the sampling distribution of the sample means, the standard error of the mean will vary...
In the sampling distribution of the sample means, the standard error of the mean will vary according to the size of the sample. As the sample size, n, gets larger, the dispersion of the sampling distribution of the means gets larger.
Suppose x has a normal distribution with mean μ = 16 and standard deviation σ =...
Suppose x has a normal distribution with mean μ = 16 and standard deviation σ = 11. Describe the distribution of x values for sample size n = 4. (Round σx to two decimal places.) μx = σx = Describe the distribution of x values for sample size n = 16. (Round σx to two decimal places.) μx = σx = Describe the distribution of x values for sample size n = 100. (Round σx to two decimal places.) μx...
Suppose x has a normal distribution with mean μ = 26 and standard deviation σ =...
Suppose x has a normal distribution with mean μ = 26 and standard deviation σ = 6. Describe the distribution of x values for sample size n = 4. (Round σx to two decimal places.) μx = σx = Describe the distribution of x values for sample size n = 16. (Round σx to two decimal places.) μx = σx = Describe the distribution of x values for sample size n = 100. (Round σx to two decimal places.) μx...
Suppose x has a normal distribution with mean μ = 52 and standard deviation σ =...
Suppose x has a normal distribution with mean μ = 52 and standard deviation σ = 4. Describe the distribution of x values for sample size n = 4. (Round σx to two decimal places.) μx = σx = Describe the distribution of x values for sample size n = 16. (Round σx to two decimal places.) μx = σx = Describe the distribution of x values for sample size n = 100. (Round σx to two decimal places.) μx...