Question

Adjusted R^2 takes into account: A) the standard error B) the intercept and the slope c)...

Adjusted R^2 takes into account: A) the standard error B) the intercept and the slope c) the p value of the overall F statistic D) the number of X variables in the sample size

Homework Answers

Answer #1

The adjusted R-squared is a modified version of R-squared that has been adjusted for the number of predictors in the model.

The adjusted R-squared increases only if the new term improves the model more than would be expected by chance.

With increase in predictors, R-squared keeps increasing but adjusted R-square does not increase unless the additional term actually has an impact on the results

So, Adjusted R^2 takes into account the number of X variables in the sample size

That will be Option- (D)

Let me know if you need anything else, if not please don't forget to like the answer :)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Regression Coefficient (b)  = **The Y-Intercept (a) = The Adjusted Coefficient of Determination (R^2) = The...
The Regression Coefficient (b)  = **The Y-Intercept (a) = The Adjusted Coefficient of Determination (R^2) = The Coeffefficient of Correlation (r ) = F-Ratio = Predict the Attendance Rate when there is a Welfare Rate of 15 Cases = Regression Statistics NOTE: Yellow Cells (NA = Not Available) have been intentionally provided without values. Multiple R 0.788542385 All of the information that you need to complete the questions is on this page. R Square NA All answers are to be on...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error 9.187149383 Observations 33 ANOVA df SS MS F Significance F Regression 1 6537.363661 6537.363661 77.4535073 6.17395E-10 Residual 31 2616.515127 84.40371378 Total 32 9153.878788 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 61.07492285 3.406335763 17.92980114 6.41286E-18 54.12765526 68.02219044 54.12765526 68.02219044 Time (Y) -0.038369095 0.004359744 -8.800767426 6.17395E-10 -0.047260852 -0.029477338 -0.047260852 -0.029477338 Using your highlighted cells, what is the equation...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations 60 ANOVA df SS MS F Significance F Regression 1 0.0617 0.0617 8.8622 0.0042 Residual 58 0.4038 0.0070 Total 59 0.4655 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -0.0144 0.0110 -1.3062 0.1966 -0.0364 0.0077 X Variable 1 0.8554 0.2874 2.9769 0.0042 0.2802 1.4307 How do you interpret the above table?
Model Summary Model R R Square Adjusted R Square      Std. Error of the Estimate 1...
Model Summary Model R R Square Adjusted R Square      Std. Error of the Estimate 1 .816 .666 .629 1.23721 a. Predictors: (Constant),x         ANOVA     Model Sum of Squares df Mean Square F                       Sig Regression Residual Total 27.500 13.776 41.276 1 9 10 27.500 1.531 17.966                 .002b                    a. Dependent Variable: Y                    b. Predictors: (Constant), X Coefficients Model Understand Coefficients B               Std Error Standardized Coefficients      Beta t Sig 1 (Constant)        x 3.001             1.125 .500                 .118 .816 2.667...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error 7.177298036 Observations 156 ANOVA df SS MS F Significance F Regression 1 38112.05194 38112.05194 739.8443652 1.09619E-60 Residual 154 7933.095493 51.5136071 Total 155 46045.14744 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 8.67422449 2.447697434 3.543830365 0.000522385 3.838827439 13.50962154 3.838827439 13.50962154 X Variable 1 0.801382837 0.029462517 27.20008024 1.09619E-60 0.743179986 0.859585688 0.743179986 0.859585688 (d) How much of the variation in...
a. A line has an intercept of 9 and a slope of 5.4. When x is...
a. A line has an intercept of 9 and a slope of 5.4. When x is 10, what is y?_________ b. A line is given as y = 44 + 9.2 x If x increases by 2 units, y increases by ___ (if y decreases, the answer should be a negative number) (provide one decimal place)_______ c. A regression analysis states that R-squared = 0.86. Which of these is correct? 86% of the variability in the response variable is due...
Regression Statistics Multiple R 0.710723 R Square 0.505127 Adjusted R Square 0.450141 Standard Error 1.216847 Observations...
Regression Statistics Multiple R 0.710723 R Square 0.505127 Adjusted R Square 0.450141 Standard Error 1.216847 Observations 21 ANOVA df SS MS F Significance F Regression 2 27.20518 13.60259 9.186487 0.00178 Residual 18 26.65291 1.480717 Total 20 53.8581 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 58.74307 12.66908 4.636728 0.000205 32.12632 85.35982 32.12632 85.35982 High School Grad -0.00133 0.000311 -4.28236 0.000448 -0.00198 -0.00068 -0.00198 -0.00068 Bachelor's -0.00016 5.46E-05 -3.00144 0.007661 -0.00028 -4.9E-05 -0.00028 -4.9E-05...
estimate std.error Intercept 26184.4 3517.3 snowfall 3824.8 247.5 r^2=.8565 adjusted r^2= .8529 s=8991 For each additional...
estimate std.error Intercept 26184.4 3517.3 snowfall 3824.8 247.5 r^2=.8565 adjusted r^2= .8529 s=8991 For each additional inch of snowfall, steam runoff decreases by 26,184 acre-feet, on average. increases by 26,184 acre-feet, on average. .decreases by 3824 acre-feet, on average.   increases by 3824 acre-feet, on average If multicollinearity is present, then we can conclude that the fitted regression model: may have estimated slopes very different from what we should expect due to numerical instabilities, making correct interpretation of the effect on...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error 5272.980333 Observations 50 ANOVA df SS MS F Significance F Regression 1 75893113.09 75893113.09 2.729543781 0.105035125 Residual 48 1334607437 27804321.59 Total 49 1410500550 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept 6396.894057 3281.342486 1.949474669 0.057094351 -200.6871963 12994.47531 -2404.335972 15198.12409 HSRANK 64.68225855 39.15075519 1.6521331 0.105035125 -14.03561063 143.4001277 -40.32805468 169.6925718 a. According to your estimate, what is the predicted...
(a) Write the equation in slope-intercept form. y = −(x − 5) (b) Write the equation...
(a) Write the equation in slope-intercept form. y = −(x − 5) (b) Write the equation in slope-intercept form. y + 2x = 6 A restaurant serves 80 customers per hour. (a) Write an equation that relates the number of customers C and time t. Use the slope and y-intercept to sketch the graph of each equation. (a)     y = 3x + 2 Identify the x-intercept. b)     y = − 1/5x Identify the x-intercept. (c)     y = 3/2x-6 Identify the...