Consider the function, f(x) = - x4 - 2x3 - 8x2 - 5x
Use parabolic interpolation (x0 = -2, x1 = -1, x2= 1, iterations = 4). Select new points sequentially as in the secant method.
First iteration
X2 = X0 - f(x0)((x1-x0)/(f(x1)-f(x0)))
Now X0 = -1 and X1 = 1
so F(X1) = - (1)4 - 2(1)3 - 8(1)2 - 5(1) = -1-2-8-5 = -16
F(X0) = - (-1)4 - 2(-1)3 - 8(-1)2 - 5(-1) = -1 +2-8+5 = -2
X2 = -1 - (-2)(((1+1)/(-16-(-2)) = -1 + 2(2/-14) = -1.2857
x2 = -1.2857
Second Iteration
x2 = -1.2857 , f(x2) =-5.277
x1 = 1, f(x1) =-16
X3 = X1 - f(x1)((x2-x1)/f(x2)-f(x1))
if we plug the value :
X3 =-2.410
Third Iteration
X3 =-2.410, f(X3) =-40.1933
x2 = -1.2857 , f(x2) =-5.277
X4 = X2 - f(x2)((x3-x2)/f(x3)-f(x2))
if we plug the value :
X4 =-1.1156
Fourth Iteration
X4 =-1.1156, F(X4) = -3.1513
X3 =-2.410, f(X3) =-40.1933
X5 = X3 - f(x3)((x4-x3)/f(x4)-f(x3))
if we plug the value :
X5 =-1.0055
So X5 = -1.0055 after fourth iteraitons
Get Answers For Free
Most questions answered within 1 hours.