Question

Let Y denote the number of “sixes” that occur when two dice are tossed. (Each of...

Let Y denote the number of “sixes” that occur when two dice are tossed. (Each of these dice has six sides with one, two, three, four, five, and six dots respectively. Note that the random variable is not the number of dots).

(a) When two dice are tossed, how many outcomes are possible? Write out these outcomes. (Hint: your outcomes should correspond to the number of 6s since that is the random variable here.)
(b) Derive the probability distribution of Y and present your answer in a table. (i.e. list all the outcomes and list the probability of each of these outcomes next to it; hint: probabilities have to sum to 1).

(c) Derive the mean of Y and derive the variance of Y. Show your work for credit.

Homework Answers

Answer #1

above solution is correct with full explaination so please rate me high.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two fair six-sided dice are rolled once. Let (X, Y) denote the pair of outcomes of...
Two fair six-sided dice are rolled once. Let (X, Y) denote the pair of outcomes of the two rolls. a) Find the probability that the two rolls result in the same outcomes. b) Find the probability that the face of at least one of the dice is 4. c) Find the probability that the sum of the dice is greater than 6. d) Given that X less than or equal to 4 find the probability that Y > X.
In an experiment, two fair dice are thrown. (a) If we denote an outcome as the...
In an experiment, two fair dice are thrown. (a) If we denote an outcome as the ordered pair (number of dots on the first die, number of dots on the second die), write down the sample space for the experiment. (So a roll of “1 dot” on the first die and a roll of “3 dots” on the second die would be the ordered pair (1, 3) in the sample space S.) You can think of the first die as...
Let X denote the number of heads than occur when four coins are tossed at random....
Let X denote the number of heads than occur when four coins are tossed at random. Under the assumptions that the four coins are independent and the probability of heads on each coin is 1/2,X is B(4,1/2). One hundred repetitions of this experiment results in 0,1,2,3, and 4 heads being observed on 7,18,40,31, and 4 trials, respectively. Do these results support the assumption that the distribution of X is B(4,1/2)?
There are six normal dice in a box, and one special die (which has sixes on...
There are six normal dice in a box, and one special die (which has sixes on two sides and ones on the remaining four sides). We randomly draw a die, and then roll it 10 times. a) What is the probability that each number obtained will be a 1 or a 6? b) What is the probability that we have chosen the special die, given that each number obtained was a 1 or a 6?
1. A random experiment consists of throwing a pair of dice, say a red die and...
1. A random experiment consists of throwing a pair of dice, say a red die and a green die, simultaneously. They are standard 6-sided dice with one to six dots on different faces. Describe the sample space. 2. For the same experiment, let E be the event that the sum of the numbers of spots on the two dice is an odd number. Write E as a subset of the sample space, i.e., list the outcomes in E. 3. List...
2. Let us define a new variable Y = the sum of two dice. Complete both...
2. Let us define a new variable Y = the sum of two dice. Complete both the probability and cumulative probability tables for Y. (Hint: First think about what values Y can take on, and then notice rolling a die produces 6 outcomes but rolling two dice produces 36 outcomes. The following table can help you enumerate all 36 outcomes and find out what is the associated Y value for each outcome.) 1 2 3 4 5 6 1 Y=2...
Consider two hypothetical dice, each of eight sides. Both dice also share the same numbers recorded...
Consider two hypothetical dice, each of eight sides. Both dice also share the same numbers recorded on the eight sides of the dice: 6, 7, 10, 11, 14, 18, 24, 28 One of the dies is fair. The other has a probability density function such that f(24)=f(28)=0.28, with its remaining sample points equi-probable and not equal f(24) Denote the rolling of the fair die as the random variable X. Denote the rolling of the non-fair die as the random variable...
1)   An experiment consists of throwing two six-sided dice and observing the number of spots on...
1)   An experiment consists of throwing two six-sided dice and observing the number of spots on the upper faces. Determine the probability that a. the sum of the spots is 3. b. each die shows four or more spots. c. the sum of the spots is not 3. d. neither a one nor a six appear on each die. e. a pair of sixes appear. f. the sum of the spots is 7.
Let X be the number showing when one true dice is thrown. Let Y be the...
Let X be the number showing when one true dice is thrown. Let Y be the number of heads obtained when (2 ×X) true coins are then tossed. Calculate E(Y) and Var(Y).
Let X represent the number that occurs when a 6-sided red die is tossed and Y...
Let X represent the number that occurs when a 6-sided red die is tossed and Y the number that occurs when a 6-sided green die is tossed. Find the variance of the random variable 6X-Y.