Question

1. Remember a geometric distribution has density f(x) = (1 − p) ^(x−1)p , E(X) =...

1. Remember a geometric distribution has density f(x) = (1 − p) ^(x−1)p , E(X) = 1/p , and V (X) = q/p^2 .

(a) Use the method of moments to create a point estimator for p.

(b) Use the method of maximum likelihood to create another point estimator for p. (It may or may not be the same).

(c) Let a random sample be 5, 2, 6, 5, 4. Use your estimator (either) to create a point estimate for p.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Remember that a Poisson Distribution has a density function of f(x) = [e^(−k)k^x]/x! . It...
1. Remember that a Poisson Distribution has a density function of f(x) = [e^(−k)k^x]/x! . It has a mean and variance both equal to k. (a) Use the method of moments to find an estimator for k. (b) Use the maximum likelihood method to find an estimator for k. (c) Show that the estimator you got from the first part is an unbiased estimator for k. (d) (5 points) Find an expression for the variance of the estimator you have...
Let X1, X2,..., Xn be a random sample from a population with probability density function f(x)...
Let X1, X2,..., Xn be a random sample from a population with probability density function f(x) = theta(1-x)^(theta-1), where 0<x<1, where theta is a positive unknown parameter a) Find the method of moments estimator of theta b) Find the maximum likelihood estimator of theta c) Show that the log likelihood function is maximized at theta(hat)
Let X1,X2, . . . ,Xn be a random sample of size n from a geometric...
Let X1,X2, . . . ,Xn be a random sample of size n from a geometric distribution for which p is the probability of success. (a) Find the maximum likelihood estimator of p (don't use method of moment). (b) Explain intuitively why your estimate makes good sense. (c) Use the following data to give a point estimate of p: 3 34 7 4 19 2 1 19 43 2 22 4 19 11 7 1 2 21 15 16
Let B > 0 and let X1 , X2 , … , Xn be a random...
Let B > 0 and let X1 , X2 , … , Xn be a random sample from the distribution with probability density function. f( x ; B ) = β/ (1 +x)^ (B+1), x > 0, zero otherwise. (i) Obtain the maximum likelihood estimator for B, β ˆ . (ii) Suppose n = 5, and x 1 = 0.3, x 2 = 0.4, x 3 = 1.0, x 4 = 2.0, x 5 = 4.0. Obtain the maximum likelihood...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
Consider the probability density function f(x) = (3θ + 1) x3θ,    0  ≤  x  ≤  1....
Consider the probability density function f(x) = (3θ + 1) x3θ,    0  ≤  x  ≤  1. The random sample is 0.859, 0.008, 0.976, 0.136, 0.864, 0.449, 0.249, 0.764. The moment estimator of θ based on a random sample of size n is .055. Please answer the following: a) find the maximum likelihood estimator of θ based on a random sample of size n. Then use your result to find the maximum likelihood estimate of θ based on the given random...
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with...
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with density function f(y|θ) = (1/2θ)e-|y|/θ for -∞ < y < ∞ where θ > 0. The first two moments of the distribution are E(Y) = 0 and E(Y2) = 2θ2. a) Find the likelihood function of the sample. b) What is a sufficient statistic for θ? c) Find the maximum likelihood estimator of θ. d) Find the maximum likelihood estimator of the standard deviation...
Let {X1, ..., Xn} be i.i.d. from a distribution with pdf f(x; θ) = θ/xθ+1 for...
Let {X1, ..., Xn} be i.i.d. from a distribution with pdf f(x; θ) = θ/xθ+1 for θ > 2 and x > 1. (a) (10 points) Calculate EX1 and V ar(X1). (b) (5 points) Find the method of moments estimator of θ. (c) (5 points) If we denote the method of moments estimator as ˆθ1. What does √ n( ˆθ1 − θ) converge in distribution to? (d) (5 points) Is the method of moment estimator efficient? Verify your answer.
Suppose Y_1, Y_2,… Y_n denote a random sample of a geometric distribution with parameter p. Find...
Suppose Y_1, Y_2,… Y_n denote a random sample of a geometric distribution with parameter p. Find the maximum likelihood estimator for p.
Let x₁ , x₂,…xₐ be a random sample from X with density f(x,?) = α?−?−1      x>1...
Let x₁ , x₂,…xₐ be a random sample from X with density f(x,?) = α?−?−1      x>1 Find maximum likelihood estimator of ?.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT