Question

suppose you flip a biased coin ( P(H) = 0.4) three times. Let X denote the...

suppose you flip a biased coin ( P(H) = 0.4) three times. Let X denote the number of heads on the first two flips, and let Y denote the number of heads on the last two flips. (a) Give the joint probability mass function for X and Y (b) Are X and Y independent? Provide evidence. (c)what is Px|y(0|1)? (d) Find Px+y(1).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You flip a coin until getting heads. Let X be the number of coin flips. a....
You flip a coin until getting heads. Let X be the number of coin flips. a. What is the probability that you flip the coin at least 8 times? b. What is the probability that you flip the coin at least 8 times given that the first, third, and fifth flips were all tails? c. You flip three coins. Let X be the total number of heads. You then roll X standard dice. Let Y be the sum of those...
A fair coin is tossed three times. Let X be the number of heads among the...
A fair coin is tossed three times. Let X be the number of heads among the first two tosses and Y be the number of heads among the last two tosses. What is the joint probability mass function of X and Y? What are the marginal probability mass function of X and Y i.e. p_X (x)and p_Y (y)? Find E(X) and E(Y). What is Cov(X,Y) What is Corr (X,Y) Are X and Y independent? Explain. Find the conditional probability mass...
A particular coin is biased. Each timr it is flipped, the probability of a head is...
A particular coin is biased. Each timr it is flipped, the probability of a head is P(H)=0.55 and the probability of a tail is P(T)=0.45. Each flip os independent of the other flips. The coin is flipped twice. Let X be the total number of times the coin shows a head out of two flips. So the possible values of X are x=0,1, or 2. a. Compute P(X=0), P(X=1), P(X=2). b. What is the probability that X>=1? c. Compute the...
Suppose you flip a fair coin 10 times. What is the probability of the last two...
Suppose you flip a fair coin 10 times. What is the probability of the last two flips both being heads if you know that the first eight flips were heads?
hello Coin 1 is biased, with P(H)=0.2; Coin 2 is also biased, with P(H)=0.6; Coin 3...
hello Coin 1 is biased, with P(H)=0.2; Coin 2 is also biased, with P(H)=0.6; Coin 3 is fair. One of these coins is randomly selected, and then flipped. Calculate: a) P(result of the flip is T). b) P(coin selected was the fair one, if the result of the flip is H). c) Assuming now that one of the coins is randomly selected and then flipped 2 times, calculate P(coin selected was the fair one, if result of the flips is...
Suppose two people flip a coin three times. Let X1, X2 denote the number of tails...
Suppose two people flip a coin three times. Let X1, X2 denote the number of tails flipped by the first and second person. Find the sampling distribution of the sample mean PLEASE EXPLAIN, I WILL GIVE A THUMBS UP FOR A NICE EXPLANATION. THANK YOU IN ADVANCE :)
Consider an experiment of tossing two coins three times. Coin A is fair but coin B...
Consider an experiment of tossing two coins three times. Coin A is fair but coin B is not with P(H)= 1/4 and P(T)= 3/4. Consider a bivariate random variable (X,Y) where X denotes the number of heads resulting from coin A and Y denotes the number of heads resulting from coin B. (a) Find the range of (X,Y) (b) Find the joint probability mass function of (X,Y). (c) Find P(X=Y), P(X>Y), P(X+Y<=4). (d) Find the marginal distributions of X and...
A biased coin has probability p to land heads and q = 1 − p to...
A biased coin has probability p to land heads and q = 1 − p to land tails. The coin is flipped until the first occurrence that differs from the initial flip. What is the number of flips required, on average?
I toss a biased coin 15 times, with a probability of heads: ? = 0.25. Let...
I toss a biased coin 15 times, with a probability of heads: ? = 0.25. Let x equal the number of heads I toss. The probability I toss at least 2 heads is _________________ (3 points)
Let X be the number of times I flip a head on a fair coin in...
Let X be the number of times I flip a head on a fair coin in 1 minute. From this description, we know that the random variable X follows a Poisson distribution. The probability function of a Poisson distribution is P[X = x] = e-λ λx / x! 1. What is the sample space of X? Explain how you got that answer. 2. Prove that the expected value of X is λ. 3. Given that λ = 30, what is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT