Question

Data collected on the discharge of the Colorado River and speed are given in the table:...

Data collected on the discharge of the Colorado River and speed are given in the table:

Discharge (ft3) Speed
1.3 2.3
2.2 0.99
5.8 3.5
11 5
12 16
14 22
16 27
21 14
49 33


Find r2, and interpret the results.

0.67; The least-squares regression line, given by ŷ = 3.95 + 0.82x, is a good fit for the data. 0.82; The least-squares regression line, given by ŷ = 3.95 + 0.82x, is not a good fit to the data. 0.82; The least-squares regression line, given by ŷ = 0.82 + 3.95x, is a good fit for the data. 0.67; The least-squares regression line, given by ŷ = 3.95 + 0.67x, is not a good fit for the data.

Homework Answers

Answer #1

In Excel type all data, here speed (y) depends on the discharge of corolado river (x variable)

To run regression

Data-data analysis- regression - choose x and y array - ok

Then from the out put we get,

y^ = 3.9469 + 0.667 * x

y^ = 3.95 + 0.67 * x. ( On rounding)

And R^2 = 0.67

That means only 67% of variation in y is explained by the independent variable in the model

So this The least-squares regression line, given by ŷ = 3.95 + 0.67x, is not a good fit for the data.

Option 4

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Data collected on the depth of the Mississippi River and the water discharge are given in...
Data collected on the depth of the Mississippi River and the water discharge are given in the table: Depth Discharge (ft3) 1.59 63 2.90 97 3.10 123 3.31 254 3.31 398 4.27 550 4.55 583 6.67 603 6.79 655 6.82 726 Find r2, and interpret the results. 0.81; The least-squares regression line, given by ŷ = −126.08 + 122.67x, is not a good fit for the data. 0.90; The least-squares regression line, given by ŷ = −126.08 + 122.67x, is...
A sales manager collected the following data on x = years of experience and y =...
A sales manager collected the following data on x = years of experience and y = annual sales ($1,000s). The estimated regression equation for these data is ŷ = 82 + 4x. Salesperson Years of Experience Annual Sales ($1,000s) 1 1 80 2 3 97 3 4 102 4 4 107 5 6 103 6 8 101 7 10 119 8 10 128 9 11 127 10 13 136 (a) Compute SST, SSR, and SSE. SST = SSR = SSE...
Consider the data. xi 1 2 3 4 5 yi 3 7 5 11 14 The...
Consider the data. xi 1 2 3 4 5 yi 3 7 5 11 14 The estimated regression equation for these data is ŷ = 0.20 + 2.60x. (a) Compute SSE, SST, and SSR using equations SSE = Σ(yi − ŷi)2, SST = Σ(yi − y)2, and SSR = Σ(ŷi − y)2. SSE = SST = SSR = (b) Compute the coefficient of determination r2. r2 = Comment on the goodness of fit. (For purposes of this exercise, consider a...
Consider the data. xi 3 12 6 20 14 yi 65 35 50 15 20 The...
Consider the data. xi 3 12 6 20 14 yi 65 35 50 15 20 The estimated regression equation for these data is ŷ = 70 − 3x. (a) Compute SSE, SST, and SSR using equations SSE = Σ(yi − ŷi)2, SST = Σ(yi − y)2, and SSR = Σ(ŷi − y)2. SSE = SST = SSR = (b) Compute the coefficient of determination r2. (Round your answer to three decimal places.) r2 = Comment on the goodness of fit....
Consider the data. xi 1 2 3 4 5 yi 4 7 6 10 13 The...
Consider the data. xi 1 2 3 4 5 yi 4 7 6 10 13 The estimated regression equation for these data is ŷ = 1.70 + 2.10x. (a) Compute SSE, SST, and SSR using equations SSE = Σ(yi − ŷi)2, SST = Σ(yi − y)2, and SSR = Σ(ŷi − y)2. SSE= SST= SSR= (b) Compute the coefficient of determination r2. r2= Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it...
Consider the data. xi 1 2 3 4 5 yi 3 7 4 10 12 The...
Consider the data. xi 1 2 3 4 5 yi 3 7 4 10 12 The estimated regression equation for these data is ŷ = 0.90 + 2.10x. (a)Compute SSE, SST, and SSR using equations SSE = Σ(yi − ŷi)2,SST = Σ(yi − y)2,and SSR = Σ(ŷi − y)2. SSE= SST= SSR= (b)Compute the coefficient of determination r2. r2= Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is at least 0.55.)...
Consider the data. xi 1 2 3 4 5 yi 3 7 4 10 12 The...
Consider the data. xi 1 2 3 4 5 yi 3 7 4 10 12 The estimated regression equation for these data is ŷ = 0.90 + 2.10x. (a) Compute SSE, SST, and SSR using equations SSE = Σ(yi − ŷi)2, SST = Σ(yi − y)2, and SSR = Σ(ŷi − y)2. SSE=SST=SSR= (b) Compute the coefficient of determination r2. r2 = Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is...
The following data show the brand, price ($), and the overall score for six stereo headphones...
The following data show the brand, price ($), and the overall score for six stereo headphones that were tested by a certain magazine. The overall score is based on sound quality and effectiveness of ambient noise reduction. Scores range from 0 (lowest) to 100 (highest). The estimated regression equation for these data is ŷ = 23.528 + 0.315x, where x = price ($) and y = overall score. Brand Price ($) Score A 180 76 B 150 71 C 95...
The following data show the brand, price ($), and the overall score for six stereo headphones...
The following data show the brand, price ($), and the overall score for six stereo headphones that were tested by a certain magazine. The overall score is based on sound quality and effectiveness of ambient noise reduction. Scores range from 0 (lowest) to 100 (highest). The estimated regression equation for these data is ŷ = 22.324 + 0.327x, where x = price ($) and y = overall score. Brand Price ($) Score A 180 78 B 150 69 C 95...
The following data show the brand, price ($), and the overall score for six stereo headphones...
The following data show the brand, price ($), and the overall score for six stereo headphones that were tested by a certain magazine. The overall score is based on sound quality and effectiveness of ambient noise reduction. Scores range from 0 (lowest) to 100 (highest). The estimated regression equation for these data is ŷ = 24.331 + 0.307x, where x = price ($) and y = overall score. Brand Price ($) Score A 180 74 B 150 71 C 95...