Question

SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error...

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.909785963
R Square 0.827710499
Adjusted R Square 0.826591736
Standard Error 7.177298036
Observations 156
ANOVA
df SS MS F Significance F
Regression 1 38112.05194 38112.05194 739.8443652 1.09619E-60
Residual 154 7933.095493 51.5136071
Total 155 46045.14744
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 8.67422449 2.447697434 3.543830365 0.000522385 3.838827439 13.50962154 3.838827439 13.50962154
X Variable 1 0.801382837 0.029462517 27.20008024 1.09619E-60 0.743179986 0.859585688 0.743179986 0.859585688
(d) How much of the variation in the sample values of total point earned does the model you estimated in part (b) explain?
If required, round your answer to two decimal places.
%
(e) Mark Sweeney spent 80 hours studying. Use the regression model you estimated in part (b) to predict the total points Mark earned.
If required, round your answer to the nearest whole number. Do not round intermediate calculations.
$

Homework Answers

Answer #1

(D) Amount of variation is equal to the value of coefficient of determination or R squared

Using the given output data table

R square = 0.8277 or 82.77

So, 82.77% is the variation in the sample values of total point earned does the model you estimated in part (b) explain

(E) Regression equation using the given data output table is

Total points earned = 8.6742 + 0.80138*(number of hours)

we have to find total points earned when number of hours = 80

this gives us

= 8.6742 + 0.80138*(80)

= 72.78

= 73 (rounded to nearest whole number)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error 9.187149383 Observations 33 ANOVA df SS MS F Significance F Regression 1 6537.363661 6537.363661 77.4535073 6.17395E-10 Residual 31 2616.515127 84.40371378 Total 32 9153.878788 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 61.07492285 3.406335763 17.92980114 6.41286E-18 54.12765526 68.02219044 54.12765526 68.02219044 Time (Y) -0.038369095 0.004359744 -8.800767426 6.17395E-10 -0.047260852 -0.029477338 -0.047260852 -0.029477338 Using your highlighted cells, what is the equation...
SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error 0.428710255 Observations 115 ANOVA df SS MS F Significance F Regression 4 4.878479035 1.219619759 6.635852231 8.02761E-05 Residual 110 20.21717314 0.183792483 Total 114 25.09565217 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 0.321875686 0.323939655 0.99362854 0.322584465 -0.320096675 0.963848047 -0.320096675 0.963848047 Gender -0.307211858 0.082630734 -3.717888514 0.000317832 -0.470966578 -0.143457137 -0.470966578 -0.143457137 Age 0.000724105 0.091134233 0.007945479 0.993674883 -0.179882553 0.181330763 -0.179882553 0.181330763...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error 514.2440271 Observations 471 ANOVA df SS MS F Significance F Regression 3 9723795745 3241265248 12256.7707 0 Residual 467 123496711.4 264446.9194 Total 470 9847292456 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -267.1127974 42.01832073 -6.357055513 4.8988E-10 -349.68118 -184.54441 -349.68118 -184.54441 Fuel cost (000,000) 0.449917223 0.098292092 4.577349137 6.0451E-06 0.25676768 0.64306676 0.25676768 0.64306676 Salary (000,000) -0.327915884 0.188252958 -1.741889678 0.08218614 -0.6978436...
SUMMARY OUTPUT Regression Statistics Multiple R 0.870402 R Square 0.7576 Adjusted R Square 0.68488 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.870402 R Square 0.7576 Adjusted R Square 0.68488 Standard Error 1816.52 Observations 27 ANOVA df SS MS F Significance F Regression 6 2.06E+08 34376848 10.41804 2.81E-05 Residual 20 65994862 3299743 Total 26 2.72E+08 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -4695.4 12622.97 -0.37197 0.713825 -31026.5 21635.66 -31026.5 21635.66 AGE 161.7028 126.5655 1.277621 0.216015 -102.308 425.7137 -102.308 425.7137 MILAGE -0.03441 0.023186 -1.4842 0.153346 -0.08278 0.013953 -0.08278 0.013953...
SUMMARY OUTPUT Regression Statistics Multiple R 0.884651238 R Square 0.782607814 Adjusted R Square 0.601447658 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.884651238 R Square 0.782607814 Adjusted R Square 0.601447658 Standard Error 25.32612538 Observations 12 ANOVA df SS MS F Significance F Regression 5 13854.44091 2770.888181 4.319977601 0.051673038 Residual 6 3848.475761 641.4126268 Total 11 17702.91667 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -53.17436031 42.95203957 -1.237993838 0.261960445 -158.274215 51.92549434 -158.274215 51.92549434 Advertising ($1000s) 2.050813091 0.763960482 2.684449181 0.036320193 0.181469133 3.92015705 0.181469133 3.92015705 t (quarters) -4.047065728 2.779316427 -1.456137088 0.19560701 -10.84780803 2.753676575...
Regression Statistics Multiple R 0.710723 R Square 0.505127 Adjusted R Square 0.450141 Standard Error 1.216847 Observations...
Regression Statistics Multiple R 0.710723 R Square 0.505127 Adjusted R Square 0.450141 Standard Error 1.216847 Observations 21 ANOVA df SS MS F Significance F Regression 2 27.20518 13.60259 9.186487 0.00178 Residual 18 26.65291 1.480717 Total 20 53.8581 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 58.74307 12.66908 4.636728 0.000205 32.12632 85.35982 32.12632 85.35982 High School Grad -0.00133 0.000311 -4.28236 0.000448 -0.00198 -0.00068 -0.00198 -0.00068 Bachelor's -0.00016 5.46E-05 -3.00144 0.007661 -0.00028 -4.9E-05 -0.00028 -4.9E-05...
SUMMARY OUTPUT Regression Statistics Multiple R 0.92585919 R Square 0.85721525 Adjusted R Square 0.84928276 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.92585919 R Square 0.85721525 Adjusted R Square 0.84928276 Standard Error 14.7134321 Observations 20 ANOVA df SS MS F Significance F Regression 1 23394.2185 23394.2185 108.063881 4.9013E-09 Residual 18 3896.73153 216.485085 Total 19 27290.95 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -260.93886 39.3752125 -6.626983 3.2026E-06 -343.66312 -178.21461 -343.66312 -178.21461 Height 5.92431175 0.56989864 10.3953779 4.9013E-09 4.72699913 7.12162438 4.72699913 7.12162438 RESIDUAL OUTPUT Observation Predicted Weight Residuals 1 106.368464 8.63153552...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error 5272.980333 Observations 50 ANOVA df SS MS F Significance F Regression 1 75893113.09 75893113.09 2.729543781 0.105035125 Residual 48 1334607437 27804321.59 Total 49 1410500550 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept 6396.894057 3281.342486 1.949474669 0.057094351 -200.6871963 12994.47531 -2404.335972 15198.12409 HSRANK 64.68225855 39.15075519 1.6521331 0.105035125 -14.03561063 143.4001277 -40.32805468 169.6925718 a. According to your estimate, what is the predicted...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations 60 ANOVA df SS MS F Significance F Regression 1 0.0617 0.0617 8.8622 0.0042 Residual 58 0.4038 0.0070 Total 59 0.4655 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -0.0144 0.0110 -1.3062 0.1966 -0.0364 0.0077 X Variable 1 0.8554 0.2874 2.9769 0.0042 0.2802 1.4307 How do you interpret the above table?
Dep.= Mileage Indep.= Cylinders SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Cylinders SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 12.4926 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept 38.7857 Cylinders -2.7500 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 4.0000 1.9507 6.0000 1.1763 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and its...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT