Station |
Square Footage |
Turnout Time |
Area Squared |
Time Squared |
Area * Time |
||
31 |
3842 |
1.82 |
14760964 |
3.3124 |
6992.44 |
||
32 |
11572 |
1.86 |
133911184 |
3.4596 |
21523.92 |
||
33 |
6802 |
2.13 |
46267204 |
4.5369 |
14488.26 |
||
34 |
18500 |
2.37 |
342250000 |
5.6169 |
43845 |
||
35 |
19232 |
1.92 |
369869824 |
3.6864 |
36925.44 |
||
36 |
4500 |
2.33 |
20250000 |
5.4289 |
10485 |
||
37 |
6700 |
2 |
44890000 |
4 |
13400 |
||
38 |
3093 |
2.02 |
9566649 |
4.0804 |
6247.86 |
||
39 |
9229 |
2.22 |
85174441 |
4.9284 |
20488.38 |
||
40 |
6094 |
2.42 |
37136836 |
5.8564 |
14747.48 |
||
41 |
15130 |
2.44 |
228916900 |
5.9536 |
36917.2 |
||
42 |
7523 |
2.22 |
56595529 |
4.9284 |
16701.06 |
||
43 |
15000 |
3.18 |
225000000 |
10.1124 |
47700 |
||
44 |
9000 |
2.18 |
81000000 |
4.7524 |
19620 |
||
45 |
9647 |
2.35 |
93064609 |
5.5225 |
22670.45 |
||
46 |
15130 |
2.5 |
228916900 |
6.25 |
37825 |
||
Sum |
160994 |
35.96 |
2017571040 |
82.4256 |
370577.49 |
||
Mean (2 point) |
403620545.98 |
Correlation Coefficient |
Coefficient of Determination |
||||
SD (2 point) |
902225767.07 |
0.3460507 |
|||||
What is the Dependent Variable (2 point)? |
|||||||
|
|||||||
What is the Independent Variable (2 point)? |
|||||||
|
|||||||
Place a scatterplot of the data below (4 points). Show the trendline as well. Remember to include titles and labels. |
|||||||
What does this data tell you about the relationship (4 points)? |
|||||||
|
|||||||
State the equation of the least-squares regression line (2 point). |
|||||||
|
|||||||
Identify and interpret the slope (4 points). |
|||||||
|
|||||||
Identify and interpret the intercept (4 points). |
|||||||
|
|||||||
If appropriate, use the least-squares regression equation to predict the turnout time for a 12,000 square foot fire station (4 points). |
|||||||
|
|||||||
If appropriate, use the least-squares regression equation to predict the turnout time for a 25,000 square foot fire station (4 points). |
|||||||
|
|||||||
Obtain the residual plot and analyze the output (4 points). |
|||||||
Plot |
|||||||
Analysis |
Turnout Time | Fitted | Residual |
1.82 | 2.11073 | -0.2907256 |
1.86 | 2.2807 | -0.420700659 |
2.13 | 2.17581 | -0.045813074 |
2.37 | 2.43304 | -0.063040531 |
1.92 | 2.44914 | -0.529136487 |
2.33 | 2.12519 | 0.204805631 |
2 | 2.17357 | -0.173570195 |
2.02 | 2.09426 | -0.07425583 |
2.22 | 2.22918 | -0.009180405 |
2.42 | 2.16024 | 0.259755146 |
2.44 | 2.35894 | 0.081062438 |
2.22 | 2.19167 | 0.028332849 |
3.18 | 2.35608 | 0.82392101 |
2.18 | 2.22414 | -0.044144921 |
2.35 | 2.23837 | 0.111628188 |
2.5 | 2.35894 | 0.141062438 |
From the residual VS order plot, we know that residual has a trend. Hence, it violates the assumption of randomness on model error.
Get Answers For Free
Most questions answered within 1 hours.