Question

For the data set shown below, complete parts (a) through (d) below. X 20 30 40...

For the data set shown below, complete parts (a) through (d) below.

X 20 30 40 50 60 Y 98 93 91 85 68 ​

(a) Use technology to find the estimates of beta 0 and beta 1.

beta 0 ~ b 0=_____​(Round to two decimal places as​ needed.)

beta 1 ~ b 1=_____(Round to two decimal places as​ needed.)

(b) Use technology to compute the standard error, the point estimate for o' (o with a little tag on the top)

S e =_____(Round to four decimal places as needed.)

(c) Assuming the residuals are normally distributed, use technology to determine Sb1

Sb1 =_____ (Round to four decimal places as required)

(d) Assuming the residuals are normally distributed, test H0: B1 =0 versus H1:B1 =/ at the a = 0.005 level of significance. Use the P - value approach.

The P - value for this test is _____ (Round to three decimal places as needed.

Homework Answers

Answer #1

I have solved this using R

A) b0=114.20

b1= -0.68

B) Se= 5.0200

c) Sb1= 0.1587

D) p- value= 0.023

As p-value> 0.005 so we fail to reject the null hypothesis

R Code-

X=c(20,30,40,50,60)
Y=c(98,93,91,85,68)
Z=lm(Y~X)
Z
S=summary(Z)
S$sigma
S

Output-

Call:
lm(formula = Y ~ X)

Coefficients:
(Intercept)            X  
     114.20        -0.68  

[1] 5.01996

Call:
lm(formula = Y ~ X)

Residuals:
   1    2    3    4    5 
-2.6 -0.8  4.0  4.8 -5.4 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 114.2000     6.7350  16.956 0.000447 ***
X            -0.6800     0.1587  -4.284 0.023377 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.02 on 3 degrees of freedom
Multiple R-squared:  0.8595,    Adjusted R-squared:  0.8126 
F-statistic: 18.35 on 1 and 3 DF,  p-value: 0.02338
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 100 93 89 85 70 (a) Find the estimates of β0 and β1. β0 ≈b0 = ____ ​(Round to two decimal places as​ needed.) β1 ≈b1 = ____ (Round to two decimal places as​ needed.) ​(b)  Compute the standard​ error, the point estimate for σ. se= ______ ( Rounding to four decimal places) ​(c)  Assuming the residuals are normally​ distributed, determine...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 102 95 91 83 70 ​ (a) Use technology to find the estimates of beta 0 and beta 1. beta 0 almost equals b0= ​ (Round to two decimal places as​ needed.) beta1 almost equals b1= (Round to two decimal places as​ needed.) (b) Use the technology to compute the standard error, the point estimate for o. Sc= (Round to four...
For the data set shown below, complete parts (a) through (d). X Y 20 102 30...
For the data set shown below, complete parts (a) through (d). X Y 20 102 30 97 40 93 50 83 60 72 (a) Find the estimates of Bo and B1. Bo=bo= _____ (Round to three decimal places as needed.) B1=b1= ______(Round to four decimal places as needed.) (b) Compute the standard error the point estimate for se= ____ (c) Assuming the residuals are normally distributed, determine Sb1=____ (Round to four decimal places as needed.) (d) Assuming the residuals are...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5 7 8 y 4 7 8 12 13 (a) Find the estimates of β0 and β1. β0 ≈b0 = ____ ​(Round to three decimal places as​ needed.) β1 ≈b1 = ____ (Round to three decimal places as​ needed.) ​(b)  Compute the standard​ error, the point estimate for σ. se= ______ ​(c)  Assuming the residuals are normally​ distributed, determine sb1 . Sb1= _____ (d) ​Assuming...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83 60   70 ​(a) Use technology to find the estimates of β0 and β1. β0≈b0=114.60 ​(Round to two decimal places as​ needed.) β1≈b1=−0.68 ​(Round to two decimal places as​ needed.) ​ (b) Use technology to compute the standard​ error, the point estimate for σ. Se=3.7771 ​(Round to four decimal places as​ needed.) ​(c) Assuming the residuals are normally​ distributed, use technology to determine sb1. sb1=__?__...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83 60   70 ​(a) Use technology to find the estimates of β0 and β1. β0≈b0equals=114.60 ​(Round to two decimal places as​ needed.) β1≈b1=−0.68 ​(Round to two decimal places as​ needed.) ​ (b) Use technology to compute the standard​ error, the point estimate for σ. Se=3.7771 ​(Round to four decimal places as​ needed.) ​(c) Assuming the residuals are normally​ distributed, use technology to determine sb1. sb1=__?__...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83...
For the data set shown​ below x   y 20   98 30   95 40   91 50   83 60   70 ​(a) Use technology to find the estimates of β0 and β1. β0 ≈b0=114.60 ​(Round to two decimal places as​ needed.) β1≈b1=−0.68 ​(Round to two decimal places as​ needed.) ​(b) Use technology to compute the standard​ error, the point estimate for σ. se=3.7771 ​(Round to four decimal places as​ needed.) ​(c) Assuming the residuals are normally​ distributed, use technology to determine sb1. sb1equals=__?__...
For the data set shown? below, complete parts? (a) through? (d) below. x 3 4 5...
For the data set shown? below, complete parts? (a) through? (d) below. x 3 4 5 7 8 y 4 6 8 12 13 ?(a)??Find the estimates of beta 0 and beta 1. beta 0almost equalsb 0equals nothing ?(Round to three decimal places as? needed.) beta 1almost equalsb 1equals nothing ?(Round to three decimal places as? needed.) ?(b)??Compute the standard? error, the point estimate for sigma. s Subscript eequals nothing ?(Round to four decimal places as? needed.) ?(c)??Assuming the residuals...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5 7 8 y 5 7 6 13 14 ​(a)  Find the estimates of beta 0 and beta 1. beta 0almost equalsb 0equals nothing ​(Round to three decimal places as​ needed.) beta 1almost equalsb 1equals nothing ​(Round to three decimal places as​ needed.) ​(b)  Compute the standard​ error, the point estimate for sigma. s Subscript eequals nothing ​(Round to four decimal places as​ needed.) ​(c)  ...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 100 97 93 81 68 ​(a) Use technology to find the estimates of beta β0 and beta β1. beta β0almost equals≈b0equals=nothing ​(Round to two decimal places as​ needed.) beta β1almost equals≈b1equals=nothing ​(Round to two decimal places as​ needed.) B.)