Question

You wish to test the following claim (HaHa) at a significance level of α=0.001α=0.001.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1<μ2Ha:μ1<μ2...

You wish to test the following claim (HaHa) at a significance level of α=0.001α=0.001.

      Ho:μ1=μ2Ho:μ1=μ2
      Ha:μ1<μ2Ha:μ1<μ2

You obtain the following two samples of data.

Sample #1 Sample #2
63.6 29.4 22 70.8
78.8 36.9 62 55.7
46.7 60.4 25.4 57.8
53.6 65.3 56.7 43.8
43.8 68.9 55.7 103.4
59.3 51 76.9 60.9
19.8 35.3 84.5 59.8
91.6 66.5 47.8 78.8
58.3 8 51.6 55.2
97.8 60.9 70.8 60.4
41.9 42.5 49.4 35.3
40.6 38.4 78.8 71.5
32.6 31.6 66.5 41.9
56.7 37.7 58.3 55.7
64.7 67.6 44.9 80.8
36.1 65.3 53.1 97.8
74.5
48.6 56.2 89.6 73.6
69.7 60.7 54.1 63.9
44.1 51.7 53.2 55.8
86.5 89.6 65.9 38.6
61.1 73.6 82.1 48.6
79.7 65.5 91.6 43.3
43.3 83.1 37.3 86.5
54.5 61.1 80.5 54.1
48.6 65.9 72.1 89.6
86.5 79.7 70.2 83.1
61.5 81.3 61.5 63.9
51.2



What is the test statistic for this sample? (Report answer accurate to three decimal places.)
test statistic =

What is the test statistic for this sample? (Report answer accurate to three decimal places.)
test statistic =

What is the p-value for this sample? For this calculation, use the degrees of freedom reported from the technology you are using. (Report answer accurate to four decimal places.)
p-value =

The p-value is...

  • less than (or equal to) αα
  • greater than αα



This test statistic leads to a decision to...

  • reject the null
  • accept the null
  • fail to reject the null



As such, the final conclusion is that...

  • There is sufficient evidence to warrant rejection of the claim that the first population mean is less than the second population mean.
  • There is not sufficient evidence to warrant rejection of the claim that the first population mean is less than the second population mean.
  • The sample data support the claim that the first population mean is less than the second population mean.
  • There is not sufficient sample evidence to support the claim that the first population mean is less than the second population mean.

Homework Answers

Answer #1
t-Test: Two-Sample Assuming Unequal Variances
Sample #1 Sample #2
Mean 56.30923 65.84
Variance 371.1209 244.4361
Observations 65 45
Hypothesized Mean Difference 0
df 105 Degree of freedom
t Stat -2.855 Test -stats
P(T<=t) one-tail 0.0026 P-value
t Critical one-tail 3.16967
P(T<=t) two-tail 0.005182
t Critical two-tail 3.385608

P-value is GREATER than

FAIL TO REJECT THE NULL

  • There is sufficient evidence to warrant rejection of the claim that the first population mean is less than the second population mean.
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You wish to test the following claim (HaHa) at a significance level of α=0.001α=0.001. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.001α=0.001. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=27n1=27 with a mean of ¯x1=86.9x¯1=86.9 and a standard deviation of s1=11.7s1=11.7 from the first population. You obtain a sample of size n2=14n2=14 with a mean...
You wish to test the following claim (HaHa) at a significance level of α=0.002α=0.002.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1≠μ2Ha:μ1≠μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.002α=0.002.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1≠μ2Ha:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain the following two samples of data. Sample #1 Sample #2 60 68.9 65.3 84.7 56.9 65.8 77.6 72.4 69.2 58.9 70 68.9 71.3 78 87.1 60.7 61.3 77.2...
You wish to test the following claim (HaHa) at a significance level of α=0.02α=0.02.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1<μ2Ha:μ1<μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.02α=0.02.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1<μ2Ha:μ1<μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. Use non-pooled test. You obtain a sample of size n1=25n1=25 with a mean of M1=55.8M1=55.8 and a standard deviation of SD1=18.5SD1=18.5 from the first population. You obtain a sample of size n2=26n2=26 with a mean of M2=65.5M2=65.5 and a standard deviation of SD2=6.7SD2=6.7 from the second population....
You wish to test the following claim (HaHa) at a significance level of α=0.01α=0.01. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.01α=0.01. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=26n1=26 with a mean of ¯x1=74.8x¯1=74.8 and a standard deviation of s1=8.3s1=8.3 from the first population. You obtain a sample of size n2=13n2=13 with a mean...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1≠μ2Ha:μ1≠μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1≠μ2Ha:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=16n1=16 with a mean of ¯x1=62.4x¯1=62.4 and a standard deviation of s1=15.3s1=15.3 from the first population. You obtain a sample of size n2=25n2=25 with a mean...
You wish to test the following claim (HaHa) at a significance level of α=0.01α=0.01.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1≠μ2Ha:μ1≠μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.01α=0.01.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1≠μ2Ha:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain a sample of size n1=15n1=15 with a mean of M1=76.2M1=76.2 and a standard deviation of SD1=12.6SD1=12.6 from the first population. You obtain a sample of size n2=18n2=18 with...
You wish to test the following claim (HaHa) at a significance level of α=0.001 Ho:μ1=μ2 Ha:μ1≠μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.001 Ho:μ1=μ2 Ha:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=13 with a mean of ¯x1=69.1 and a standard deviation of s1=15.5 from the first population. You obtain a sample of size n2=22 with a mean...
You wish to test the following claim (HaHa) at a significance level of α=0.10α=0.10.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1>μ2Ha:μ1>μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.10α=0.10.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1>μ2Ha:μ1>μ2 You obtain the following two samples of data. Sample #1 Sample #2 78.9 58 49.9 49.9 88.8 26.3 40.5 73.2 36.9 56 92.7 57.5 50.5 55.5 78.9 51.7 47.9 61.3 68.3 57.5 71.2 40.5 77.7 71.7 56 43.4 98.7 44.2 49.9 43.4 63.6 57.5 92.7 35.5 67.3 66.9 101.9 40.5 92.7 81.7 60.9 73.7 84.8 33.8 74.8 45.8 23.8 84 57.2 79 38 58.6...
You wish to test the following claim (HaHa) at a significance level of α=0.01 Ho:μ1=μ2 Ha:μ1<μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.01 Ho:μ1=μ2 Ha:μ1<μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=22 with a mean of ¯x1=65.6 and a standard deviation of s1=6.2 from the first population. You obtain a sample of size n2=20 with a mean...
You wish to test the following claim (HaHa) at a significance level of α=0.10α=0.10.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1<μ2Ha:μ1<μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.10α=0.10.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1<μ2Ha:μ1<μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain the following two samples of data. Sample #1 Sample #2 82.9 76 98.2 63.9 76.2 86.9 71.7 82.5 77.4 87.4 61.8 85.1 89 83 88.5 86.4 78.9 92.7...