You wish to test the following claim (HaHa) at a significance
level of α=0.001α=0.001.
Ho:μ1=μ2Ho:μ1=μ2
Ha:μ1<μ2Ha:μ1<μ2
You obtain the following two samples of data.
Sample #1 | Sample #2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
What is the test statistic for this sample? (Report answer accurate
to three decimal places.)
test statistic =
What is the test statistic for this sample? (Report answer
accurate to three decimal places.)
test statistic =
What is the p-value for this sample? For this calculation, use the
degrees of freedom reported from the technology you are using.
(Report answer accurate to four decimal places.)
p-value =
The p-value is...
This test statistic leads to a decision to...
As such, the final conclusion is that...
t-Test: Two-Sample Assuming Unequal Variances | ||
Sample #1 | Sample #2 | |
Mean | 56.30923 | 65.84 |
Variance | 371.1209 | 244.4361 |
Observations | 65 | 45 |
Hypothesized Mean Difference | 0 | |
df | 105 | Degree of freedom |
t Stat | -2.855 | Test -stats |
P(T<=t) one-tail | 0.0026 | P-value |
t Critical one-tail | 3.16967 | |
P(T<=t) two-tail | 0.005182 | |
t Critical two-tail | 3.385608 |
P-value is GREATER than
FAIL TO REJECT THE NULL
Get Answers For Free
Most questions answered within 1 hours.