Question

Let X be a Gaussian random variable with mean μ and variance σ^2. Compute the following...

Let X be a Gaussian random variable with mean μ and variance σ^2. Compute the following moments:

Remember that we use the terms Gaussian random variable and normal random variable interchangeably.

(Enter your answers in terms of μ and σ.)

E[X^2]=

E[X^3]=

E[X^4]=

Var(X^2)=

Please give the detail process of proof.

Homework Answers

Answer #1

Let me know in the comment section if anything is not clear. I will reply ASAP!

If you like the answer, please give a thumbs-up. This will be quite encouraging for me.Thank-you!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X be a random variable with mean μ and variance σ^2. Define Y=(X-μ)/σ. What is...
Let X be a random variable with mean μ and variance σ^2. Define Y=(X-μ)/σ. What is the variance of Y?
Let ​Y​ be a normal random variable with mean ​μ​ and variance ​σ​2 . Assume that...
Let ​Y​ be a normal random variable with mean ​μ​ and variance ​σ​2 . Assume that ​μ​ is known but ​σ​2 is unknown. ​​Show that ((​Y​-​μ​)/​σ​)2​ ​is a pivotal quantity. Use this pivotal quantity to derive a 1-​α confidence interval for ​σ​2. (The answer should be left in terms of critical values for the appropriate distribution.)
Let X and Y be independent and identically distributed random variables with mean μ and variance...
Let X and Y be independent and identically distributed random variables with mean μ and variance σ2. Find the following: a) E[(X + 2)2] b) Var(3X + 4) c) E[(X - Y)2] d) Cov{(X + Y), (X - Y)}
i) A random variable X has a binomial distribution with mean 6 and variance 3.6: Find...
i) A random variable X has a binomial distribution with mean 6 and variance 3.6: Find P(X = 4). ii) Let X equal the larger outcome when a pair of four-sided dice is rolled. The pmf of X is f(x) = (2x - 1/ 16) ; x = 1; 2; 3; 4. Find the mean, variance and standard deviation of X. iii) Let μ and σ^2 denote the mean and variance of the random variable able X. Determine E [(X...
If x is a binomial random variable, compute the mean, the standard deviation, and the variance...
If x is a binomial random variable, compute the mean, the standard deviation, and the variance for each of the following cases: (a) n=4,p=0.7 μ= σ2= σ= (b) n=3,p=0.7 μ= σ2= σ= (c) n=5,p=0.4 μ= σ2= σ= (d) n=5,p=0.8 μ= σ2= σ=
X is a normal random variable with mean μ and standard deviation σ. Then P( μ−...
X is a normal random variable with mean μ and standard deviation σ. Then P( μ− 1.2 σ ≤ X ≤ μ+ 1.9 σ) =? Answer to 4 decimal places.
Let the random variable X follow a normal distribution with μ = 60 and σ^2=64. a....
Let the random variable X follow a normal distribution with μ = 60 and σ^2=64. a. Find the probability that X is greater than 70. b. Find the probability that X is greater than 45 and less than 74. c. Find the probability that X is less than 65. d. The probability is 0.2 that X is greater than what​ number? e. The probability is 0.05 that X is in the symmetric interval about the mean between which two​ numbers?
Q6/   Let X be a discrete random variable defined by the following probability function x 2...
Q6/   Let X be a discrete random variable defined by the following probability function x 2 3 7 9 f(x) 0.15 0.25 0.35 0.25 Give   P(4≤  X < 8) ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ Q7/ Let X be a discrete random variable defined by the following probability function x 2 3 7 9 f(x) 0.15 0.25 0.35 0.25 Let F(x) be the CDF of X. Give  F(7.5) ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ Q8/ Let X be a discrete random variable defined by the following probability function : x 2 6...
Assume the random variable X is normally distributed with mean μ=50 and standard deviation σ=7. Compute...
Assume the random variable X is normally distributed with mean μ=50 and standard deviation σ=7. Compute the probability. Be sure to draw a normal curve with the area corresponding to the probability shaded. What is P(56 ≤ X ≤ 66) ?
Let X be a normal random variable with μ=15 and σ=2.3 Find: P(X less than or...
Let X be a normal random variable with μ=15 and σ=2.3 Find: P(X less than or equal to 16) Answer choices a. .023 b. .357 c. .332 d. .455 e. .668 P(X≤16).P(X≤16). Drawing a picture may be helpful.