Question

Solve the missing values in the following regression model. Write down all solutions along with their...

Solve the missing values in the following regression model. Write down all solutions along with their key letter.

Regression Statistics
Multiple R 0.489538
R Square 0.239648
Adjusted R Square 0.231889
Standard Error 11.76656
Observations 100
ANOVA
df SS MS F Significance F
Regression 1 4276.457 30.88765 2.35673E-07
Residual 138.452
Total
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0%
Intercept -24.1551 12.83013 -1.88268 0.062709 -49.61605579 1.305895 -57.8589 9.548787
Food 3.167042 0.569851 2.36E-07 2.03619109 4.297893 1.670083 4.664001

Homework Answers

Answer #1

For simple linear regression model, the formula of degrees of freedom are as follows:

Degrees of freddom for residual = n - 2 = 100 - 2 = 98

(Where n = # of observations )

Degrees of freedom for total = n - 1 = 100 - 1 = 99

Formula of ME regression = ( SSreg / dfreg) = 4276.457

Formula of ME residual= ( SSres / dfres)

THerefore SSres. = MSres. * dfres. = 138.452 * 98 = 13568.3

SStotal = SSreg. + SSres. = 4276.457 + 13568.3 = 17844.76

t Stat = Corresponding coefficient / SE(coefficient) = 3.167042/0.569851 =5.557667

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Compare the two regression models. Does it make sense that spending and household debt could each...
Compare the two regression models. Does it make sense that spending and household debt could each be predicted by annual household income? Why or why not? 1. Predicting spending by household income Regression Statistics Multiple R 0.859343186 R Square 0.738470711 Adjusted R Square 0.737149856 Standard Error 1602.157625 Observations 200 ANOVA df SS MS F Significance F Regression 1 1435121315 1435121315 559.085376 1.42115E-59 Residual 198 508247993.2 2566909.056 Total 199 1943369308 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower...
(a) Present the regression output below noting the coefficients, assessing the adequacy of the model and...
(a) Present the regression output below noting the coefficients, assessing the adequacy of the model and the p-value of the model and the coefficients individually. SUMMARY OUTPUT Regression Statistics Multiple R 0.19476248 R Square 0.037932424 Adjusted R Square 0.035147858 Standard Error 12.09940236 Observations 694 ANOVA df SS MS F Significance F Regression 2 3988.511973 1994.255986 13.62238235 1.5759E-06 Residual 691 101159.3165 146.3955376 Total 693 105147.8284 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 27.88762549...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations...
Regression Statistics Multiple R 0.3641 R Square 0.1325 Adjusted R Square 0.1176 Standard Error 0.0834 Observations 60 ANOVA df SS MS F Significance F Regression 1 0.0617 0.0617 8.8622 0.0042 Residual 58 0.4038 0.0070 Total 59 0.4655 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -0.0144 0.0110 -1.3062 0.1966 -0.0364 0.0077 X Variable 1 0.8554 0.2874 2.9769 0.0042 0.2802 1.4307 How do you interpret the above table?
According to the Data, is the regression a better fit than the one with the Dummy...
According to the Data, is the regression a better fit than the one with the Dummy variable, explain? Regression Statistics Multiple R 0.550554268 R Square 0.303110002 Adjusted R Square 0.288887757 Standard Error 2.409611727 Observations 51 ANOVA df SS MS F Significance F Regression 1 123.7445988 123.7445988 21.31238807 2.8414E-05 Residual 49 284.5052051 5.806228676 Total 50 408.2498039 Coefficients Standard Error t Stat P-value Lower 95% Intercept 5.649982553 1.521266701 3.713998702 0.000522686 2.592882662 U-rate 1.826625993 0.395670412 4.616534206 2.84144E-05 1.0314965 Multiple R 0.572568188 R Square...
Discuss the strength and the significance of your regression model by using R-square and significance F...
Discuss the strength and the significance of your regression model by using R-square and significance F where α = 0.05. SUMMARY OUTPUT Regression Statistics Multiple R 0.919011822 R Square 0.844582728 Adjusted R Square 0.834446819 Standard Error 163.953479 Observations 50 ANOVA df SS MS F Significance F Regression 3 6719578.309 2239859.44 83.3257999 1.28754E-18 Residual 46 1236514.191 26880.7433 Total 49 7956092.5 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 21.7335244 114.2095971 0.19029508 0.84991523 -208.158471 251.62552...
Discuss the model and interpret the results: report overall model fit (t and significance), report the...
Discuss the model and interpret the results: report overall model fit (t and significance), report the slope coefficient and significance, report and interpret r squared. Regression Statistics Multiple R 0.001989374 R Square 3.95761E-06 Adjusted R Square -0.005046527 Standard Error 8605.170404 Observations 200 ANOVA df SS MS F Significance F Regression 1 58025.4985 58025.4985 0.00078361 0.977695901 Residual 198 14661693620 74048957.68 Total 199 14661751645 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 15668.85874 2390.079111 6.555790838...
Calculate the following statistics given the existing information (1 point per calculation): Regression Statistics Multiple R...
Calculate the following statistics given the existing information (1 point per calculation): Regression Statistics Multiple R R Square Adjusted R Square 0.559058 Standard Error Observations 30 ANOVA df SS MS F Significance F Regression 2 3609132796 19.38411515 6.02827E-06 Residual 27 2513568062 Total 29 6122700857 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -15800.8 57294.51554 -0.27578 0.784814722 CARAT 12266.83 1999.250369 6.135715 1.48071E-06 DEPTH 156.686 928.9461882 0.168671 0.867312915 Additionally interpret your results. Be sure to comment on Accuracy, significance...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error 9.187149383 Observations 33 ANOVA df SS MS F Significance F Regression 1 6537.363661 6537.363661 77.4535073 6.17395E-10 Residual 31 2616.515127 84.40371378 Total 32 9153.878788 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 61.07492285 3.406335763 17.92980114 6.41286E-18 54.12765526 68.02219044 54.12765526 68.02219044 Time (Y) -0.038369095 0.004359744 -8.800767426 6.17395E-10 -0.047260852 -0.029477338 -0.047260852 -0.029477338 Using your highlighted cells, what is the equation...
Use Excel to develop a regression model for the Hospital Database (using the “Excel Databases.xls” file...
Use Excel to develop a regression model for the Hospital Database (using the “Excel Databases.xls” file on Blackboard) to predict the number of Personnel by the number of Births. Perform a test of the slope. What is the value of the test statistic? Write your answer as a number, round your answer to 2 decimal places. SUMMARY OUTPUT Regression Statistics Multiple R 0.697463374 R Square 0.486455158 Adjusted R Square 0.483861497 Standard Error 590.2581194 Observations 200 ANOVA df SS MS F...
] A partial computer output from a regression analysis using Excel’s Regression tool follows. Regression Statistics...
] A partial computer output from a regression analysis using Excel’s Regression tool follows. Regression Statistics Multiple R (1) R Square 0.923 Adjusted R Square (2) Standard Error 3.35 Observations ANOVA df SS MS F Significance F Regression (3) 1612 (7) (9) Residual 12 (5) (8) Total (4) (6) Coefficients Standard Error t Stat P-value Intercept 8.103 2.667 x1 7.602 2.105 (10) x2 3.111 0.613 (11)