Question

Let ?? ~ ??? (?,θ ) independent random variable. for ? = 1,2,… ?. Find an...

Let ?? ~ ??? (?,θ ) independent random variable. for ? = 1,2,… ?. Find an estimator for ? by the maximum likelihood method.(MLE)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let ?? ~ ???? (2?, 4?) independet random variables. for ? = 1,2,… ?. a)Find an...
Let ?? ~ ???? (2?, 4?) independet random variables. for ? = 1,2,… ?. a)Find an estimator for ? by the method of moments. b) Find an estimator for ? by the maximum likelihood estimator (MLE)
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
Let X1,X2,...,Xn be i.i.d. Geometric(θ), θ = 1,2,3,... random variables. a) Find the maximum likelihood estimator...
Let X1,X2,...,Xn be i.i.d. Geometric(θ), θ = 1,2,3,... random variables. a) Find the maximum likelihood estimator of θ. b) In a certain hard video game, a player is confronted with a series of AI opponents and has an θ probability of defeating each one. Success with any opponent is independent of previous encounters. Until first win, the player continues to AI contest opponents. Let X denote the number of opponents contested until the player’s first win. Suppose that data of...
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from...
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x; θ) = 1/(xlnθ) , 1 < x < θ. a) Obtain the maximum likelihood estimator of θ, ˆθ. b) Is ˆθ a consistent estimator of θ? Justify your answer.
1. Find the maximum likelihood estimator (MLE) of θ based on a random sample X1, ....
1. Find the maximum likelihood estimator (MLE) of θ based on a random sample X1, . . . , Xn from each of the following distributions (a) f(x; θ) = θ(1 − θ) ^(x−1) , x = 1, 2, . . . ; 0 ≤ θ ≤ 1 (b) f(x; θ) = (θ + 1)x ^(−θ−2) , x > 1, θ > 0 (c) f(x; θ) = θ^2xe^(−θx) , x > 0, θ > 0
Suppose data collected suggest a Bernoulli distribution with parameter θ (a special case of the binomial...
Suppose data collected suggest a Bernoulli distribution with parameter θ (a special case of the binomial distribution). a) Use the method of moments to obtain an estimator of θ. b) Obtain the maximum likelihood estimator (MLE) of θ.
Let ?1, ?2,…. . , ?? (n random variables iid) as a variable X whose pdf...
Let ?1, ?2,…. . , ?? (n random variables iid) as a variable X whose pdf is given by ??-a-1 for ? ≥1. (a) For ? ≥ 1 calculate ? (??? ≤ ?) = ? (?). Deduce the function density of probabilities of Y = lnX. (b) Determine the maximum likelihood estimator (MLE) of ? and show that he is without biais
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) =...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) = e^-(x-θ) , x > θ 0 otherwise. Find the sufficient statistic for θ. Find the maximum likelihood estimator of θ. Find the MVUE of θ,θˆ Is θˆ a consistent estimator of θ?
Let we have a sample of 100 numbers from exponential distribution with parameter θ f(x, θ)...
Let we have a sample of 100 numbers from exponential distribution with parameter θ f(x, θ) = θ e- θx      , 0 < x. Find MLE of parameter θ. Is it unbiased estimator? Find unbiased estimator of parameter θ.
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x...
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x ≤ 1 , 0 < θ < ∞ Find the method of moments estimator of θ.