Question

These are two hypotheses with the two samples drawn independently from 2 normally distributed distributions. Ho:...

These are two hypotheses with the two samples drawn independently from 2 normally distributed distributions.

  • Ho: µ 1- µ2= 0
  • Ha: µ 1- µ2 not equal to 0

sample #1 mean = 67

sample #2 mean = 69

sample #1 population var = 17

sample #2 population var = 15

n1= 30

n2=35

Test whether the population means differ at the 1% significance level. Tell us the result of the hypothesis.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following data drawn independently from normally distributed populations: x1 = 34.4 x2 = 26.4...
Consider the following data drawn independently from normally distributed populations: x1 = 34.4 x2 = 26.4 σ12 = 89.5 σ22 = 95.8 n1 = 21 n2 = 23 a. Construct the 90% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.) Confidence interval is__________ to__________. b. Specify the competing hypotheses in order to determine...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 75 x−2x−2 = 79 σ1 = 11.10 σ2 = 1.67 n1 = 20 n2 = 20 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 57 x−2x−2 = 63 σ1 = 11.5 σ2 = 15.2 n1 = 20 n2 = 20 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 68 x−2x−2 = 80 σ1 = 12.30 σ2 = 1.68 n1 = 15 n2 = 15 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 28.5 x−2x−2 = 29.8 σ12 = 96.9 σ22 = 87.0 n1 = 29 n2 = 25 a. Construct the 99% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 29.8 x−2x−2 = 32.4 σ12 = 95.3 σ22 = 91.6 n1 = 34 n2 = 29 a. Construct the 99% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 34.4 x−2x−2 = 26.4 σ12 = 89.5 σ22 = 95.8 n1 = 21 n2 = 23 a. Construct the 90% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 ≥ 0 HA: μ1 − μ2 < 0 x−1x−1 = 267 x−2x−2 = 295 s1 = 37 s2 = 31 n1 = 11 n2 = 11 Test Statistics:
Consider the following measures based on independently drawn samples from normally distributed populations: (You may find...
Consider the following measures based on independently drawn samples from normally distributed populations: (You may find it useful to reference the appropriate table: chi-square table or F table) Sample 1: s21s12 = 276, and n1 = 51 Sample 2: s22s22 = 164, and n2 = 26 a. Construct the 90% interval estimate for the ratio of the population variances. (Round "F" value and final answers to 2 decimal places.) b. Using the confidence interval from Part (a), test if the...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 ≥ 0 HA: μ1 − μ2 < 0 x−1x−1 = 246 x−2x−2 = 250 s1 = 26 s2 = 22 n1 = 8 n2 = 8 a-1. Calculate the value of the test statistic under the assumption that the population variances are equal. (Negative values should...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT