While Florida obviously has the upper hand in terms of production, California claims that they have the upper hand in terms of productivity. test this hypothesis
Year | CALIFORNIA | FLORIDA |
1978 | 226 | 290 |
1979 | 199 | 287 |
1980 | 320 | 358 |
1981 | 357 | 301 |
1982 | 233 | 225 |
1983 | 429 | 260 |
1984 | 274 | 246 |
1985 | 299 | 247 |
1986 | 309 | 324 |
1987 | 335 | 319 |
1988 | 342 | 363 |
1989 | 332 | 377 |
1990 | 408 | 276 |
1991 | 143 | 360 |
1992 | 371 | 315 |
1993 | 363 | 381 |
1994 | 344 | 341 |
1995 | 293 | 365 |
1996 | 296 | 342 |
1997 | 320 | 362 |
1998 | 341 | 401 |
1999 | 177 | 304 |
2000 | 322 | 387 |
2001 | 275 | 369 |
2002 | 264 | 392 |
2003 | 313 | 345 |
2004 | 262 | 428 |
2005 | 338 | 276 |
2006 | 321 | 301 |
2007 | 242 | 271 |
2008 | 330 | 367 |
2009 | 250 | 354 |
2010 | 314 | 296 |
2011 | 347 | 319 |
2012 | 328 | 338 |
2013 | 319 | 311 |
2014 | 298 | 250 |
2015 | 296 | 239 |
2016 | 345 | 211 |
Grand Total | 12657 | 12498 |
Two-Sample T-Test and CI: CALIFORNIA, FLORIDA
Method
μ₁: mean of CALIFORNIA |
µ₂: mean of FLORIDA |
Difference: μ₁ - µ₂ |
Equal variances are assumed for this analysis.
Descriptive Statistics
Sample | N | Mean | StDev | SE Mean |
CALIFORNIA | 39 | 304.5 | 57.9 | 9.3 |
FLORIDA | 39 | 320.5 | 53.3 | 8.5 |
Estimation for Difference
Difference |
Pooled StDev |
95% Lower Bound for Difference |
-16.0 | 55.6 | -36.9 |
Test
Null hypothesis | H₀: μ₁ - µ₂ = 0 |
Alternative hypothesis | H₁: μ₁ - µ₂ > 0 |
T-Value | DF | P-Value |
-1.27 | 76 | 0.896 |
Since p-value is more than alpha (0.05) we fail to reject null hypothesis and conclude that there is no significant evidence for California's claim.
Get Answers For Free
Most questions answered within 1 hours.