Question

Suppose that x has a binomial distribution with n = 200 and p = .4. 1....

Suppose that x has a binomial distribution with n = 200 and p = .4.

1. Show that the normal approximation to the binomial can appropriately be used to calculate probabilities for

  1. Make continuity corrections for each of the following, and then use the normal approximation to the binomial to find each probability:
    1. P(x = 80)
    2. P(x ≤ 95)
    3. P(x < 65)
    4. P(x ≥ 100)
    5. P(x > 100)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that x has a binomial distribution with n = 202 and p = 0.47. (Round...
Suppose that x has a binomial distribution with n = 202 and p = 0.47. (Round np and n(1-p) answers to 2 decimal places. Round your answers to 4 decimal places. Round z values to 2 decimal places. Round the intermediate value (σ) to 4 decimal places.) (a) Show that the normal approximation to the binomial can appropriately be used to calculate probabilities about x np n(1 – p) Both np and n(1 – p) (Click to select)≥≤ 5 (b)...
Suppose that x has a binomial distribution with n = 199 and p = 0.47. (Round...
Suppose that x has a binomial distribution with n = 199 and p = 0.47. (Round np and n(1-p) answers to 2 decimal places. Round your answers to 4 decimal places. Round z values to 2 decimal places. Round the intermediate value (σ) to 4 decimal places.) (a) Show that the normal approximation to the binomial can appropriately be used to calculate probabilities about x. np n(1 – p) Both np and n(1 – p) (Click to select) 5 (b)...
If x is a binomial random variable where n = 100 and p = 0.20, find...
If x is a binomial random variable where n = 100 and p = 0.20, find the probability that x is more than 18 using the normal approximation to the binomial. Check the condition for continuity correction.
Suppose Y is a random variable that follows a binomial distribution with n = 25 and...
Suppose Y is a random variable that follows a binomial distribution with n = 25 and π = 0.4. (a) Compute the exact binomial probability P(8 < Y < 14) and the normal approximation to this probability without using a continuity correction. Comment on the accuracy of this approximation. (b) Apply a continuity correction to the approximation in part (a). Comment on whether this seemed to improve the approximation.
If x is a binomial random variable where n = 100 and p = 0.20, find...
If x is a binomial random variable where n = 100 and p = 0.20, find the probability that x is more than 18 using the normal approximation to the binomial. Check the condition for continuity correction need step and sloution
A drug test is accurate 95% of the time. If the test is given to 200...
A drug test is accurate 95% of the time. If the test is given to 200 people who have not taken drugs, what is the probability that exactly 191 will test negative? First, use the normal approximation to the binomial, and use the continuity correction. Normal Approximate Probability = ? Now use the binomial distribution. Exact Binomial Probability = ? Does the normal distribution make a pretty good approximation to the binomial, in this case? No, those probabilities are far...
Let X be a binomial random variable with parameters n = 500 and p = 0.12....
Let X be a binomial random variable with parameters n = 500 and p = 0.12. Use normal approximation to the binomial distribution to compute the probability P (50 < X ≤ 65).
Compute​ P(x) using the binomial probability formula. Then determine whether the normal distribution can be used...
Compute​ P(x) using the binomial probability formula. Then determine whether the normal distribution can be used to estimate this probability. If​ so, approximate​ P(x) using the normal distribution and compare the result with the exact probability. n=73 p=0.82 x=53 a) Find​ P(x) using the binomial probability distribution: P(x) = b) Approximate P(x) using the normal distribution: P(x) = c) Compare the normal approximation with the exact probability. The exact probability is less than the approximated probability by _______?
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used...
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used to estimate this probability. If​ so, approximate​ P(X) using the normal distribution and compare the result with the exact probability. n=50​, p=0.50​, and x=17 For n=50​, p=0.5​, and X=17​, use the binomial probability formula to find​ P(X). Q: By how much do the exact and approximated probabilities​ differ? A. ____​(Round to four decimal places as​ needed.) B. The normal distribution cannot be used.
Suppose X follows the Binomial Distribution with n=1000 and p=0.002. Use the Poisson approximation to determine...
Suppose X follows the Binomial Distribution with n=1000 and p=0.002. Use the Poisson approximation to determine the probability that X is at least 2.