test the hypothesis that Florida has been the dominant orange-producing state in the US historically (e.g. conduct an upper tailed test for Florida compared to the total US values excluding Florida (column F)). Assume a z-distribution
Year | FLORIDA | Non-Florida |
1970 | 137.7 | 48.07 |
1971 | 142.3 | 47.13 |
1972 | 137 | 54.45 |
1973 | 169.7 | 54.96 |
1974 | 165.8 | 50.41 |
1975 | 173.3 | 64.51 |
1976 | 181.2 | 61.58 |
1977 | 186.8 | 56.15 |
1978 | 167.8 | 52.32 |
1979 | 164 | 46.6 |
1980 | 206.7 | 66.93 |
1981 | 172.4 | 72.18 |
1982 | 125.8 | 50.89 |
1983 | 139.6 | 85.58 |
1984 | 116.7 | 52.74 |
1985 | 103.9 | 54.45 |
1986 | 119.2 | 56.24 |
1987 | 119.7 | 61.475 |
1988 | 138 | 62.25 |
1989 | 146.6 | 62.45 |
1990 | 110.2 | 74.215 |
1991 | 151.6 | 27.35 |
1992 | 139.8 | 69.81 |
1993 | 186.6 | 69.16 |
1994 | 174.4 | 66.05 |
1995 | 205.5 | 58.105 |
1996 | 203.3 | 60.59 |
1997 | 226.2 | 66.82 |
1998 | 244 | 71.525 |
1999 | 186 | 38.58 |
2000 | 233 | 66.76 |
2001 | 223.3 | 57.635 |
2002 | 230 | 53.76 |
2003 | 203 | 64.04 |
2004 | 242 | 52.62 |
2005 | 149.8 | 66.7 |
2006 | 147.7 | 63.05 |
2007 | 129 | 48.28 |
2008 | 170.2 | 64.176 |
2009 | 162.5 | 48.209 |
2010 | 133.7 | 59.135 |
2011 | 140.5 | 64.449 |
2012 | 146.7 | 59.419 |
2013 | 133.6 | 56.293 |
2014 | 104.7 | 51.277 |
2015 | 96.95 | 49.652 |
Grand Total | 7488.45 | 2689.025 |
Data:
n1 = 46
n2 = 46
x1-bar = 162.79
x2-bar = 58.46
s1 = 39
s2 = 10
Hypotheses:
Ho: μ1 ≤ μ2
Ha: μ1 > μ2
Decision Rule:
α = 0.05
Critical z- score = 1.64485363
Reject Ho if z > 1.64485363
Test Statistic:
SE = √{(s1^2 /n1) + (s2^2 /n2)} = √((39)^2/46) + ((10)^2/46)) = 5.9363
z = (x1-bar - x2-bar)/SE = (162.79 - 58.46)/5.93625559041915 = 17.575
p- value = 0
Decision (in terms of the hypotheses):
Since 17.57505 > 1.644853627 we reject Ho and accept Ha
Conclusion (in terms of the problem):
There is sufficient evidence that Florida has been the dominant orange-producing state in the US.
Get Answers For Free
Most questions answered within 1 hours.