Let A, B, and C be sets in a universal set U. We are given n(U) = 63, n(A) = 33, n(B) = 34, n(C) = 28, n(A ∩ B) = 15, n(A ∩ C) = 17, n(B ∩ C) = 14, n(A ∩ B ∩ CC) = 9. Find the following values.
(a) n(AC ∩ B ∩ C)
(b) n(A ∩ BC ∩ CC)
given,
n(U)=63, n(A)=33, n(B)=34, n(C)=28, n(AnB)=15, n(AnC)=17, n(BnC)=14, N(AnBnCC)=n(AnBnC)=9
we can calculate the followings first,
n(AuB) = n(A)+n(B)-n(AnB) = 33+34-15=52
n(AuC) = n(A)+n(C)-n(AnC) = 33+28-17=44
n(BuC) = n(B)+n(C)-n(BnC) = 34+28-14=47
n(AuBuC) = n(U) = 63
a.
(ACnBnC)=[ACn(BnC)]
,=AC+(BnC)-[ACu(BnC)] [by AnB=A+B-AuB]
=AC+BC-[AC + BC- ACnBC] [by AuB=A+B-AB and BnC=BC]
=AC+BC-AC-BC+ABC
=ABC=AnBnC
hence, n(ACnBnC)=n(AnBnC) = 9.
________________________________________________________
b.
[AnBCnCC]=[(AnBC)nCC]
=AnBC+CC-[(AnBC)uCC] [by AnB=A+B-AuB]
=ABC+CC-[(AuCC)n(BCuCC)] [by (AnB)uC=(AnC)u(BnC)]
=ABC+C-[(AuC)n(BCuC)] [CC=C]
=ABC+C-[(AuC)nC] [(BCuC)=C]
=ABC+C-C [(AuC)nC=C]
=ABC = AnBnC
n[AnBCnCC]=n(AnBnC)=9
Get Answers For Free
Most questions answered within 1 hours.